Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 15(12): 30539-44, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26690158

RESUMEN

Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H2 pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H2.

2.
Nano Lett ; 11(8): 3058-64, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21696176

RESUMEN

The quantum transport properties of graphene nanoribbon networks are investigated using first-principles calculations based on density functional theory. Focusing on systems that can be experimentally realized with existing techniques, both in-plane conductance in interconnected graphene nanoribbons and tunneling conductance in out-of-plane nanoribbon intersections were studied. The characteristics of the ab initio electronic transport through in-plane nanoribbon cross-points is found to be in agreement with results obtained with semiempirical approaches. Both simulations confirm the possibility of designing graphene nanoribbon-based networks capable of guiding electrons along desired and predetermined paths. In addition, some of these intersections exhibit different transmission probability for spin up and spin down electrons, suggesting the possible applications of such networks as spin filters. Furthermore, the electron transport properties of out-of-plane nanoribbon cross-points of realistic sizes are described using a combination of first-principles and tight-binding approaches. The stacking angle between individual sheets is found to play a central role in dictating the electronic transmission probability within the networks.

3.
Micromachines (Basel) ; 12(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069654

RESUMEN

Micro/nanomachines (MNMs) correspond to human-made devices with motion in aqueous solutions. There are different routes for powering these devices. Light-driven MNMs are gaining increasing attention as fuel-free devices. On the other hand, Plasmonic nanoparticles (NPs) and their photocatalytic activity have shown great potential for photochemistry reactions. Here we review several photocatalyst nanosystems, with a special emphasis in Plasmon induced photocatalytic reactions, as a novel proposal to be explored by the MNMs community in order to extend the light-driven motion of MNMs harnessing the visible and near-infrared (NIR) light spectrum.

4.
Nanoscale ; 13(3): 1738-1744, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33428700

RESUMEN

Plasmonic reversible gas sensors are of paramount importance for the monitoring of indoor environments. Herein, we design and engineer a plasmonic foam, with a high surface area, confined inside a capillary glass tube for the live monitoring of carbon monoxide (CO) in closed environments using surface-enhanced resonance Raman scattering. The illumination of the sensor with light during the flow of air allows the live monitoring of the concentration of atmospheric CO through surface-enhanced resonance Raman scattering. The sensor was prepared with a detection range from 10 to 40 ppm, due to health needs. The results show a sensitive, selective, reversible and robust sensor applicable to the monitoring of CO levels but also to other gas species upon appropriate functionalization.

5.
Nanoscale ; 11(6): 2829-2839, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30676594

RESUMEN

Herein, a series of N-doped carbon nanotube (CNx) samples were obtained by modifying the synthesis temperature. Consequently, the proportion of graphitic nitrogen (Ngraph) in the samples was systematically increased as a function of temperature. This allowed evaluation of the role of the CNx graphitic nitrogen in the oxygen reduction reaction (ORR). A correlation between the Ngraph content and the ORR onset potential was observed, which shifted to more positive potentials with an increase in kinetic current density (jk); this showed that Ngraph played a significant catalytic role in the ORR. The samples with high Ngraph content favored the two-electron pathway for the ORR not only in basic media (pH = 13) but also in neutral media (pH = 7), representing an attractive alternative for wastewater remediation through the on-site generation of H2O2. The energetic calculations showed that the formation of H2O2 must be favorable in the presence of graphitic nitrogen sites. Finally, the performance of the buckypaper arrangement was evaluated, and the CNx buckypaper showed a higher cathodic current peak as compared to CNx traditional ink dispersions. Overall, this study not only sheds light on the role of Ngraph in the ORR, but also demonstrates that CNx buckypaper is an efficient 3D electrode for electrocatalytic applications.

8.
Sci Rep ; 2: 363, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509463

RESUMEN

The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapour deposition, which influences the formation of atomic-scale "elbow" junctions and nanotube covalent interconnections. Detailed elemental analysis revealed that the "elbow" junctions are preferred sites for excess boron atoms, indicating the role of boron and curvature in the junction formation mechanism, in agreement with our first principle theoretical calculations. Exploiting this material's ultra-light weight, super-hydrophobicity, high porosity, thermal stability, and mechanical flexibility, the strongly oleophilic sponge-like solids are demonstrated as unique reusable sorbent scaffolds able to efficiently remove oil from contaminated seawater even after repeated use.

9.
Nanoscale ; 3(4): 1304-15, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21229160

RESUMEN

Coupling of localized surface plasmon resonances results in singular effects at the void space between noble metal nanoparticles. However, implementation of practical applications based on plasmon coupling calls for the high yield production of metal nanoparticle clusters (dimers, trimers, tetramers, …) with small gaps. Therefore, controlled assembly using colloid chemistry methods is an emerging and promising field. We present a brief overview over the controlled assembly of plasmonic nanoparticle clusters by colloid chemistry methods, together with a description of their plasmonic properties and some applications, with an emphasis in sensing through surface-enhanced Raman scattering spectroscopy for bio-detection purposes. We point out the important role of separation methods to obtain colloidal clusters in high yield. A special encouragement to explore assembly of anisotropic building blocks is pursued.


Asunto(s)
Coloides/química , Cristalización/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Resonancia por Plasmón de Superficie/métodos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Nanotecnología/métodos , Tamaño de la Partícula , Propiedades de Superficie
10.
ACS Nano ; 2(12): 2585-91, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19206295

RESUMEN

Electrical current could be efficiently guided in 2D nanotube networks by introducing specific topological defects within the periodic framework. Using semiempirical transport calculations coupled with Landauer-Buttiker formalism of quantum transport in multiterminal nanoscale systems, we provide a detailed analysis of the processes governing the atomic-scale design of nanotube circuits. We found that when defects are introduced as patches in specific sites, they act as bouncing centers that reinject electrons along specific paths, via a wave reflection process. This type of defects can be incorporated while preserving the 3-fold connectivity of each carbon atom embedded within the graphitic lattice. Our findings open up a new way to explore bottom-up design, at the nanometer scale, of complex nanotube circuits which could be extended to 3D nanosystems and applied in the fabrication of nanoelectronic devices.


Asunto(s)
Electrónica/instrumentación , Nanotecnología/instrumentación , Nanotubos de Carbono/química
11.
ACS Nano ; 1(4): 369-75, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19206689

RESUMEN

Carbon nanotube growth in the presence of nitrogen has been the subject of much experimental scrutiny, sparking intense debate about the role of nitrogen in the formation of diverse structural features, including shortened length, reduced diameters, and bamboo-like multilayered nanotubules. In this paper, the origin of these features is elucidated using a combination of experimental and theoretical techniques, showing that N acts as a surfactant during growth. N doping enhances the formation of smaller diameter tubes. It can also promote tube closure which includes a relatively large amount of N atoms into the tube lattice, leading to bamboo-like structures. Our findings demonstrate that the mechanism is independent of the tube chirality and suggest a simple procedure for controlling the growth of bamboo-like nanotube morphologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA