Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Chemistry ; 30(15): e202304050, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38197477

RESUMEN

A low pKa (5.2), high polarizable volume (3.8 Å), and proneness to oxidation under ambient conditions make selenocysteine (Sec, U) a unique, natural reactive handle present in most organisms across all domains of life. Sec modification still has untapped potential for site-selective protein modification and probing. Herein we demonstrate the use of a cyclometalated gold(III) compound, [Au(bnpy)Cl2 ], in the arylation of diselenides of biological significance, with a scope covering small molecule models, peptides, and proteins using a combination of multinuclear NMR (including 77 Se NMR), and LC-MS. Diphenyl diselenide (Ph-Se)2 and selenocystine, (Sec)2 , were used for reaction optimization. This approach allowed us to demonstrate that an excess of diselenide (Au/Se-Se) and an increasing water percentage in the reaction media enhance both the conversion and kinetics of the C-Se coupling reaction, a combination that makes the reaction biocompatible. The C-Se coupling reaction was also shown to happen for the diselenide analogue of the cyclic peptide vasopressin ((Se-Se)-AVP), and the Bos taurus glutathione peroxidase (GPx1) enzyme in ammonium acetate (2 mM, pH=7.0). The reaction mechanism, studied by DFT revealed a redox-based mechanism where the C-Se coupling is enabled by the reductive elimination of the cyclometalated Au(III) species into Au(I).


Asunto(s)
Cistina/análogos & derivados , Compuestos de Organoselenio , Selenio , Animales , Bovinos , Oro/química , Péptidos , Glutatión Peroxidasa/metabolismo , Selenocisteína/química
2.
Anal Bioanal Chem ; 416(11): 2819-2833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38244050

RESUMEN

The reactivity of thioredoxin (Trx1) with the Au(I) drug auranofin (AF) and two therapeutic N-heterocyclic carbene (NHC)2-Au(I) complexes (bis [1-methyl-3-acridineimidazolin-2-ylidene]gold(I) tetrafluoroborate (Au3BC) and [1,3-diethyl-4,5-bis(4methoxyphenyl)imidazol-2-ylidene]gold(I) (Au4BC)) was investigated. Direct infusion (DI) electrospray ionization (ESI) mass spectrometry (MS) allowed information on the structure, stoichiometry, and kinetics of formation of Trx-Au adducts. The fragmentation of the formed adducts in the gas phase gave insights into the exact Au binding site within the protein, demonstrating the preference for Trx1 Cys32 or Cys35 of AF or the (NHC)2-Au(I) complex Au3BC, respectively. Reversed-phase HPLC suffered from the difficulty of elution of gold compounds, did not preserve the formed metal-protein adducts, and favored the loss of ligands (phosphine or NHC) from Au(I). These limitations were eliminated by capillary electrophoresis (CE) which enabled the separation of the gold compounds, Trx1, and the formed adducts. The ICP-MS/MS detection allowed the simultaneous quantitative monitoring of the gold and sulfur isotopes and the determination of the metallation extent of the protein. The hyphenation of the mentioned techniques was used for the analysis of Trx1-Au adducts for the first time.


Asunto(s)
Oro , Espectrometría de Masas en Tándem , Oro/química , Auranofina , Espectrometría de Masa por Ionización de Electrospray , Compuestos de Oro/química , Electroforesis Capilar , Factores Inmunológicos , Cromatografía Liquida , Tiorredoxinas
3.
Inorg Chem ; 62(37): 14980-14990, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37651565

RESUMEN

Methylmercury, mercury (II), and mercury (I) chlorides were found to react with vasopressin, a nonapeptide hormone cyclized by two cysteine residues, and its mono- and diselenium analogues to form several mercury-peptide adducts. The replacement of Cys by SeCys in vasopressin increased the reactivity toward methylmercury, with the predominant formation of -Se/S-Hg-Se-bridged structures and the consequent demethylation of methylmercury. In competitive experiments, CH3HgCl reacted preferentially with the diselenium analogue rather than with vasopressin. The diselenium peptide also showed the capability to displace the CH3Hg moiety bound to S in vasopressin. These results open a promising perspective for the use of selenopeptides for methylmercury chelation and detoxification strategies.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Cisteína , Cloruros , Péptidos
4.
Inorg Chem ; 62(26): 10389-10396, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37342994

RESUMEN

Auranofin, a gold(I)-based complex, is under clinical trials for application as an anticancer agent for the treatment of nonsmall-cell lung cancer and ovarian cancer. In the past years, different derivatives have been developed, modifying gold linear ligands in the search for new gold complexes endowed with a better pharmacological profile. Recently, a panel of four gold(I) complexes, inspired by the clinically established compound auranofin, was reported by our research group. As described, all compounds possess an [Au{P(OMe)3}]+ cationic moiety, in which the triethylphosphine of the parent compound auranofin was replaced with an oxygen-rich trimethylphosphite ligand. The gold(I) linear coordination geometry was complemented by Cl-, Br-, I-, and the auranofin-like thioglucose tetraacetate ligand. As previously reported, despite their close similarity to auranofin, the panel compounds exhibited some peculiar and distinctive features, such as lower log P values which can induce relevant differences in the overall pharmacokinetic profiles. To get better insight into the P-Au strength and stability, an extensive study was carried out for relevant biological models, including three different vasopressin peptide analogues and cysteine, using 31P NMR and LC-ESI-MS. A DFT computational study was also carried out for a better understanding of the theoretical fundamentals of the disclosed differences with regard to triethylphosphine parent compounds.


Asunto(s)
Antineoplásicos , Auranofina , Auranofina/farmacología , Auranofina/química , Ligandos , Oro/química , Antineoplásicos/farmacología , Espectroscopía de Resonancia Magnética
5.
Molecules ; 28(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298911

RESUMEN

Silver has a long history of antimicrobial activity and received an increasing interest in last decades owing to the rise in antimicrobial resistance. The major drawback is the limited duration of its antimicrobial activity. The broad-spectrum silver containing antimicrobial agents are well represented by N-heterocyclic carbenes (NHCs) silver complexes. Due to their stability, this class of complexes can release the active Ag+ cations in prolonged time. Moreover, the properties of NHC can be tuned introducing alkyl moieties on N-heterocycle to provide a range of versatile structures with different stability and lipophilicity. This review presents designed Ag complexes and their biological activity against Gram-positive, Gram-negative bacteria and fungal strains. In particular, the structure-activity relationships underlining the major requirements to increase the capability to induce microorganism death are highlighted here. Moreover, some examples of encapsulation of silver-NHC complexes in polymer-based supramolecular aggregates are reported. The targeted delivery of silver complexes to the infected sites will be the most promising goal for the future.


Asunto(s)
Antiinfecciosos , Complejos de Coordinación , Compuestos Heterocíclicos , Plata/farmacología , Plata/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Relación Estructura-Actividad , Bacterias Gramnegativas , Bacterias Grampositivas , Antibacterianos/farmacología , Antibacterianos/química , Metano/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química
6.
Arch Pharm (Weinheim) ; 354(8): e2000450, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33852185

RESUMEN

Current multiagent chemotherapy regimens have improved the cure rate in acute leukemia patients, but they are highly toxic and poorly efficient in relapsed patients. To improve the treatment approaches, new specific molecules are needed. The G-quadruplexes (G4s), which are noncanonical nucleic acid structures found in specific guanine-rich DNA or RNA, are involved in many cellular events, including control of gene expression. G4s are considered as targets for the development of anticancer agents. Heterocyclic molecules are well known to target and stabilize G4 structures. Thus, a new series of 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives (1a-i) was designed, synthesized, and evaluated against five human myeloid leukemia cell lines (K562, KU812, MV4-11, HL60, and U937). Their ability to stabilize various oncogene promoter G4 structures (c-MYC, BCL-2, and K-RAS) as well as the telomeric G4 was also determined through the fluorescence resonance energy transfer melting assay and native mass spectrometry. In addition, the more bioactive ligands 1g-i were tested for telomerase activity in HuT78 and MV4-11 protein extracts.


Asunto(s)
Antineoplásicos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Fenantrolinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Diseño de Fármacos , Transferencia Resonante de Energía de Fluorescencia , G-Cuádruplex/efectos de los fármacos , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/patología , Ligandos , Fenantrolinas/síntesis química , Fenantrolinas/química , Relación Estructura-Actividad , Telomerasa/metabolismo , Células U937
7.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208081

RESUMEN

Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.


Asunto(s)
Espectrometría de Masas , Selenoproteína P/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Valores de Referencia , Selenocisteína/metabolismo , Selenoproteína P/sangre , Selenoproteína P/química
8.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801394

RESUMEN

The evolution of antibacterial resistance has arisen as the main downside in fighting bacterial infections pushing researchers to develop novel, more potent and multimodal alternative drugs.Silver and its complexes have long been used as antimicrobial agents in medicine due to the lack of silver resistance and the effectiveness at low concentration as well as to their low toxicities compared to the most commonly used antibiotics. N-Heterocyclic Carbenes (NHCs) have been extensively employed to coordinate transition metals mainly for catalytic chemistry. However, more recently, NHC ligands have been applied as carrier molecules for metals in anticancer applications. In the present study we selected from literature two NHC-carbene based on acridinescaffoldand detailed nonclassicalpyrazole derived mono NHC-Ag neutral and bis NHC-Ag cationic complexes. Their inhibitor effect on bacterial strains Gram-negative and positivewas evaluated. Imidazolium NHC silver complex containing the acridine chromophore showed effectiveness at extremely low MIC values. Although pyrazole NHC silver complexes are less active than the acridine NHC-silver, they represent the first example of this class of compounds with antimicrobial properties. Moreover all complexesare not toxic and they show not significant activity againstmammalian cells (Hek lines) after 4 and 24 h. Based on our experimental evidence, we are confident that this promising class of complexes could represent a valuable starting point for developing candidates for the treatment of bacterial infections, delivering great effectiveness and avoiding the development of resistance mechanisms.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Compuestos Heterocíclicos/farmacología , Metano/análogos & derivados , Plata/química , Antibacterianos/química , Catálisis , Células HEK293 , Compuestos Heterocíclicos/química , Humanos , Metano/química , Estructura Molecular
9.
Molecules ; 26(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34279392

RESUMEN

Precision medicine is based on innovative administration methods of active principles. Drug delivery on tissue of interest allows improving the therapeutic index and reducing the side effects. Active targeting by means of drug-encapsulated micelles decorated with targeting bioactive moieties represents a new frontier. Between the bioactive moieties, peptides, for their versatility, easy synthesis and immunogenicity, can be selected to direct a drug toward a considerable number of molecular targets overexpressed on both cancer vasculature and cancer cells. Moreover, short peptide sequences can facilitate cellular intake. This review focuses on micelles achieved by self-assembling or mixing peptide-grafted surfactants or peptide-decorated amphiphilic copolymers. Nanovectors loaded with hydrophobic or hydrophilic cytotoxic drugs or with gene silence sequences and externally functionalized with natural or synthetic peptides are described based on their formulation and in vitro and in vivo behaviors.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Micelas , Nanomedicina/métodos , Péptidos/química , Medicina de Precisión/métodos , Animales , Humanos , Péptidos/efectos adversos
10.
J Enzyme Inhib Med Chem ; 35(1): 432-459, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31899980

RESUMEN

A series of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline, and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives was designed, synthesised, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiprotozoal activity with IC50 values in the µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The quinoline 1c was identified as the most potent antimalarial candidate with a ratio of cytotoxic to antiparasitic activities of 97 against the P. falciparum CQ-sensitive strain 3D7. The quinazoline 3h was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 43 on T. brucei brucei strain. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma are possible targets of this kind of nitrogen heterocyclic compounds, we have also investigated stabilisation of the Plasmodium and Trypanosoma telomeric G-quadruplexes by our best compounds through FRET melting assays.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Diseño de Fármacos , Quinolinas/química , Quinolinas/farmacología , Antiprotozoarios/síntesis química , Células Hep G2 , Humanos , Leishmania donovani/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Quinolinas/síntesis química , Relación Estructura-Actividad , Trypanosoma brucei brucei/efectos de los fármacos
11.
Molecules ; 24(2)2019 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-30669445

RESUMEN

Peptides of natural and synthetic sources are compounds operating in a wide range of biological interactions. They play a key role in biotechnological applications as both therapeutic and diagnostic tools. They are easily synthesized thanks to solid-phase peptide devices where the amino acid sequence can be exactly selected at molecular levels, by tuning the basic units. Recently, peptides achieved resounding success in drug delivery and in nanomedicine smart applications. These applications are the most significant challenge of recent decades: they can selectively deliver drugs to only pathological tissues whilst saving the other districts of the body. This specific feature allows a reduction in the drug side effects and increases the drug efficacy. In this context, peptide-based aggregates present many advantages, including biocompatibility, high drug loading capacities, chemical diversity, specific targeting, and stimuli responsive drug delivery. A dual behavior is observed: on the one hand they can fulfill a structural and bioactive role. In this review, we focus on the design and the characterization of drug delivery systems using peptide-based carriers; moreover, we will also highlight the peptide ability to self-assemble and to actively address nanosystems toward specific targets.


Asunto(s)
Sistemas de Liberación de Medicamentos/tendencias , Nanoestructuras/química , Péptidos/química , Aminoácidos/química , Transporte Biológico , Dipéptidos , Liberación de Fármacos , Humanos , Terapia Molecular Dirigida , Nanomedicina , Fenilalanina/análogos & derivados , Fenilalanina/química , Multimerización de Proteína
12.
J Enzyme Inhib Med Chem ; 32(1): 547-563, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28114821

RESUMEN

Novel series of bis- and tris-pyrrolo[1,2-a]quinoxaline derivatives 1 were synthesized and tested for in vitro activity upon the intraerythrocytic stage of W2 and 3D7 Plasmodium falciparum strains. Biological results showed good antimalarial activity with IC50 in the µM range. In attempting to investigate the large broad-spectrum antiprotozoal activities of these new derivatives, their properties toward Leishmania donovani were also investigated and revealed their selective antiplasmodial profile. In parallel, the in vitro cytotoxicity of these molecules was assessed on the human HepG2 cell line. Structure-activity relationships of these new synthetic compounds are discussed here. The bis-pyrrolo[1,2-a]quinoxalines 1n and 1p were identified as the most potent antimalarial candidates with selectivity index (SI) of 40.6 on W2 strain, and 39.25 on 3D7 strain, respectively. As the telomeres of the parasite could constitute an attractive target, we investigated the possibility of targeting Plasmodium telomeres by stabilizing the Plasmodium telomeric G-quadruplexes through a FRET melting assay by our new compounds.


Asunto(s)
Antiprotozoarios/farmacología , Diseño de Fármacos , Leishmania donovani/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Propilaminas/farmacología , Quinoxalinas/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Estructura Molecular , Propilaminas/síntesis química , Propilaminas/química , Quinoxalinas/síntesis química , Quinoxalinas/química , Relación Estructura-Actividad
13.
Biopolymers ; 106(3): 368-75, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26832831

RESUMEN

The design and synthesis of novel peptides that inhibit angiogenesis is an important area for anti-angiogenic drug development. Cyclic and small peptides present several advantages for therapeutic application, including stability, solubility, increased bio-availability and lack of immune response in the host cell. We describe here the synthesis and biological evaluations of a new cyclic peptide analog of CBO-P11: cyclo(RIKPHE), designated herein as CBO-P23M, a hexamer peptide encompassing residues 82 to 86 of VEGF which are involved in the interaction with VEGF receptor-2. CBO-P23M was prepared using in solution cyclization, therefore reducing the peptide cyclodimerization occurred during solid-phase cyclization. The cyclic dimer of CBO-P23M, which was obtained as the main side product during synthesis of the corresponding monomer, was also isolated and investigated. Both peptides markedly reduce VEGF-A-induced phosphorylation of VEGFR-2 and Erk1/2. Moreover, they exhibit anti-angiogenic activity in an in vitro morphogenesis study. Therefore CBO-P23M and CBO-P23M dimer appear as attractive candidates for the development of novel angiogenesis inhibitors for the treatment of cancer and other angiogenesis-related diseases. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 368-375, 2016.


Asunto(s)
Inhibidores de la Angiogénesis/síntesis química , Péptidos Cíclicos/síntesis química , Soluciones/química , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Ciclización , Dimerización , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Neovascularización Fisiológica/efectos de los fármacos , Péptidos Cíclicos/farmacología , Fosforilación/efectos de los fármacos , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
14.
Int J Mol Sci ; 16(6): 12159-73, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26030674

RESUMEN

This work reports on the design and the synthesis of two short linear peptides both containing a few amino acids with disorder propensity and an allylic ester group at the C-terminal end. Their structural properties were firstly analyzed by means of experimental techniques in solution such as CD and NMR methods that highlighted peptide flexibility. These results were further confirmed by MD simulations that demonstrated the ability of the peptides to assume conformational ensembles. They revealed a network of transient and dynamic H-bonds and interactions with water molecules. Binding assays with a well-known drug-target, i.e., the CXCR4 receptor, were also carried out in an attempt to verify their biological function and the possibility to use the assays to develop new specific targets for CXCR4. Moreover, our data indicate that these peptides represent useful tools for molecular recognition processes in which a flexible conformation is required in order to obtain an interaction with a specific target.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Péptidos/síntesis química , Péptidos/metabolismo , Receptores CXCR4/metabolismo , Dicroismo Circular , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Péptidos/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Espectroscopía de Protones por Resonancia Magnética
15.
J Inorg Biochem ; 252: 112479, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38218139

RESUMEN

Solution interactions of three organomercury compounds, i.e., methylmercury chloride, thimerosal and phenylmercury acetate, with a group of biochemically relevant proteins, namely cytochrome c (Cyt c), ribonuclease A (RNase A), carbonic anhydrase I (hCA I), superoxide dismutase (SOD), and serum albumin (HSA), were investigated using an established ESI MS approach. Temporal analysis of sample aliquots provided insight into the binding kinetics, while comparative analysis of the obtained mass spectra disclosed adduct formation of each mercurial with the tested proteins and the relative abundance of the species. The three organomercurials bind, exclusively and tightly, to free cysteine residues as no binding was observed in the case of proteins lacking such groups. hCA I, SOD and HSA formed distinct mercury adducts, preserving the Hg bound alkyl/aryl ligands; yet, the three organomercurials displayed significant differences in reactivity in relation to their chemical structure. The investigation was then extended to analyze the reactions with the C-terminal dodecapeptide of the enzyme human thioredoxin reductase, which contains a characteristic selenol-thiol moiety: tight Hg binding was observed. Notably, this peptide was able to remove effectively and completely the alkyl/aryl ligands of the three tested organomercurials; this behavior may be relevant to the detoxification mechanism of organomercurials in mammals. Finally, a competition experiment was carried out to establish whether protein bound mercury centers may be displaced by other competing metals. Interestingly, and quite unexpectedly, we observed that a protein bound mercury fragment may be partially displaced from its coordination site in hCA I by the medicinal gold compound auranofin.


Asunto(s)
Mercurio , Compuestos Organomercuriales , Animales , Humanos , Compuestos Organomercuriales/metabolismo , Péptidos , Oro , Superóxido Dismutasa , Mamíferos/metabolismo
16.
Pharmaceutics ; 16(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38399332

RESUMEN

The use of platinum-based anticancer drugs, such as cisplatin, oxaliplatin, and carboplatin, is a common frontline option in cancer management, but they have debilitating side effects and can lead to drug resistance. Combination therapy with other chemotherapeutic agents, such as capecitabine and gemcitabine, has been explored. One approach to overcome these limitations is the modification of traditional Pt(II) drugs to obtain new molecules with an improved pharmacological profile, such as Pt(IV) prodrugs. The design, synthesis, and characterization of two novel Pt(IV) prodrugs based on oxaliplatin bearing the anticancer drugs gemcitabine or capecitabine in the axial positions have been reported. These complexes were able to dissociate into their constituents to promote cell death and induce apoptosis and cell cycle blockade in a representative colorectal cancer cell model. Specifically, the complex bearing gemcitabine resulted in being the most active on the HCT116 colorectal cancer cell line with an IC50 value of 0.49 ± 0.04. A pilot study on the encapsulation of these complexes in biocompatible PLGA-PEG nanoparticles is also included to confirm the retention of the pharmacological properties and cellular drug uptake, opening up to the possible delivery of the studied complexes through their nanoformulation.

17.
Amino Acids ; 44(2): 733-42, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22968665

RESUMEN

A large number of bioactive peptides are cyclized through a disulfide bridge. This structural feature is very important for both bioactivity and stability. The oxidation of cysteine side chains is challenging not only to avoid intermolecular reaction leading to oligomers and oxidation of other residues but also to remove solvents and oxidant such as dimethyl sulfoxide. Supported reagents advantageously simplify the work-up of such disulfide bond formation, but may lead to a significant decrease in yield of the oxidized product. In this study, two resins working through different mechanisms were evaluated: Clear-Ox, a supported version of Ellman's reagent and Oxyfold, consisting in a series of oxidized methionine residues. The choice of the supported reagent is discussed on the light of reaction speed, side-products formation and yield considerations.


Asunto(s)
Cisteína/química , Ácido Ditionitrobenzoico/química , Metionina/química , Safrol/análogos & derivados , Dimetilsulfóxido/química , Disulfuros/química , Estructura Molecular , Oxidantes/química , Oxidación-Reducción , Safrol/química
18.
Amino Acids ; 45(6): 1395-403, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24142338

RESUMEN

Despite correct purity of crude peptides prepared on trityl resin by Fmoc/tBu microwave assisted solid phase peptide synthesis, surprisingly, lower yields than those expected were obtained while preparing C-terminal acid peptides. This could be explained by cyclization/cleavage through diketopiperazine formation during the second amino acid deprotection and third amino acid coupling. However, we provide here evidence that this is not the case and that this yield loss was due to high temperature promoted hydrolysis of the 2-chlorotrityl ester, yielding premature cleavage of the C-terminal acid peptides.


Asunto(s)
Calefacción , Microondas , Péptidos/química , Péptidos/síntesis química , Resinas Sintéticas/química , Estructura Molecular , Péptidos/aislamiento & purificación
19.
Artículo en Inglés | MEDLINE | ID: mdl-24098219

RESUMEN

In the crystal structure of the title compound, C16H24N4O4, mol-ecules are linked by N-H⋯O hydrogen bonds between the carbonyl groups of the carbamoyl and amido functional groups and the amino groups, and by N-H⋯N hydrogen bonds between the amino group and the pyridine ring, forming two-dimensional networks parallel to the ab plane.

20.
Pharmaceutics ; 15(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36839788

RESUMEN

Among the non-platinum antitumor agents, gold complexes have received increased attention owing to their strong antiproliferative effects, which generally occur through non-cisplatin-like mechanisms of action. Several studies have revealed that many cytotoxic gold compounds, such as N-heterocyclic carbene (NHC)-gold(I) complexes, are potent thioredoxin reductase (TrxR) inhibitors. Many other pathways have been supposed to be altered by gold coordination to protein targets. Within this frame, we have selected two gold(I) complexes based on aromatic ligands to be tested on cancer cells. Differently from bis [1,3-diethyl-4,5-bis(4-methoxyphenyl)imidazol-2-ylidene]gold(I) bromide (Au4BC), bis [1-methyl-3-acridineimidazolin-2-ylidene]gold(I) tetrafluoroborate (Au3BC) inhibited TrxR1 activity in vitro. Treatment of Huh7 hepatocellular carcinoma (HCC) cells, and MDA-MB-231 triple-negative breast cancer (TNBC) cells, with Au4BC inhibited cell viability, increased reactive oxygen species (ROS) levels, caused DNA damage, and induced autophagy and apoptosis. Notably, we found that, although Au3BC inhibited TrxR1 activity, no effect on the cell viabilities of HCC and BC cells was observed. At the molecular level, Au3BC induced a protective response mechanism in Huh7 and MDA-MB-231 cells, by inducing up-regulation of RAD51 and p62 protein expression, two proteins involved in DNA damage repair and autophagy, respectively. RAD51 gene knock-down in HCC cells increased cell sensitivity to Au3BC by significant reduction of cell viability, induction of DNA damage, and induction of apoptosis and autophagy. All together, these results suggest that the tested NHC-Gold complexes, Au3BC and Au4BC, showed different mechanisms of action, either dependent or independent of TrxR1 inhibition. As a result, Au3BC and Au4BC were found to be promising candidates as anticancer drugs for the treatment of HCC and BC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA