Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nature ; 548(7667): 313-317, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28783723

RESUMEN

Electronic nematic materials are characterized by a lowered symmetry of the electronic system compared to the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Such nematic phases appear in the copper- and iron-based high-temperature superconductors, and their role in establishing superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of fluctuating nematic character in a heavy-fermion superconductor, CeRhIn5 (ref. 5). We observe a magnetic-field-induced state in the vicinity of a field-tuned antiferromagnetic quantum critical point at Hc ≈ 50 tesla. This phase appears above an out-of-plane critical field H* ≈ 28 tesla and is characterized by a substantial in-plane resistivity anisotropy in the presence of a small in-plane field component. The in-plane symmetry breaking has little apparent connection to the underlying lattice, as evidenced by the small magnitude of the magnetostriction anomaly at H*. Furthermore, no anomalies appear in the magnetic torque, suggesting the absence of metamagnetism in this field range. The appearance of nematic behaviour in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated materials.

2.
Proc Natl Acad Sci U S A ; 114(21): 5384-5388, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28487488

RESUMEN

Applied pressure drives the heavy-fermion antiferromagnet CeRhIn5 toward a quantum critical point that becomes hidden by a dome of unconventional superconductivity. Magnetic fields suppress this superconducting dome, unveiling the quantum phase transition of local character. Here, we show that [Formula: see text] magnetic substitution at the Ce site in CeRhIn5, either by Nd or Gd, induces a zero-field magnetic instability inside the superconducting state. This magnetic state not only should have a different ordering vector than the high-field local-moment magnetic state, but it also competes with the latter, suggesting that a spin-density-wave phase is stabilized in zero field by Nd and Gd impurities, similarly to the case of Ce0.95Nd0.05CoIn5 Supported by model calculations, we attribute this spin-density wave instability to a magnetic-impurity-driven condensation of the spin excitons that form inside the unconventional superconducting state.

3.
Phys Rev Lett ; 122(16): 166401, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31075018

RESUMEN

SmB_{6} is a candidate topological Kondo insulator that displays surface conduction at low temperatures. Here, we perform torque magnetization measurements as a means to detect de Haas-van Alphen (dHvA) oscillations in SmB_{6} crystals grown by aluminum flux. We find that dHvA oscillations occur in single crystals containing embedded aluminum, originating from the flux used to synthesize SmB_{6}. Measurements on a sample with multiple, unconnected aluminum inclusions show that aluminum crystallizes in a preferred orientation within the SmB_{6} cubic lattice. The presence of aluminum is confirmed through bulk susceptibility measurements, but does not show a signature in transport measurements. We discuss the ramifications of our results.

4.
Phys Rev Lett ; 122(1): 016402, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012717

RESUMEN

High magnetic fields induce a pronounced in-plane electronic anisotropy in the tetragonal antiferromagnetic metal CeRhIn_{5} at H^{*}≳30 T for fields ≃20° off the c axis. Here we investigate the response of the underlying crystal lattice in magnetic fields to 45 T via high-resolution dilatometry. At low fields, a finite magnetic field component in the tetragonal ab plane explicitly breaks the tetragonal (C_{4}) symmetry of the lattice revealing a finite nematic susceptibility. A modest a-axis expansion at H^{*} hence marks the crossover to a fluctuating nematic phase with large nematic susceptibility. Magnetostriction quantum oscillations confirm a Fermi surface change at H^{*} with the emergence of new orbits. By analyzing the field-induced change in the crystal-field ground state, we conclude that the in-plane Ce 4f hybridization is enhanced at H^{*}, in agreement with the in-plane lattice expansion. We argue that the nematic behavior observed in this prototypical heavy-fermion material is of electronic origin, and is driven by the hybridization between 4f and conduction electrons which carries the f-electron anisotropy to the Fermi surface.

5.
Phys Rev Lett ; 121(3): 037003, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30085774

RESUMEN

CeCo(In_{0.990}Hg_{0.010})_{5} is a charge doped variant of the d-wave CoCoIn_{5} superconductor with coexistent antiferromagnetic and superconducting transitions occurring at T_{N}=3.4 and T_{c}=1.4 K, respectively. We use neutron diffraction and spectroscopy to show that the magnetic resonant fluctuations present in the parent superconducting phase are replaced by collinear c-axis magnetic order with three-dimensional Ising critical fluctuations. No low-energy transverse spin fluctuations are observable in this doping-induced antiferromagnetic phase and the dynamic resonant spectral weight predominately shifts to the elastic channel. Static (τ>0.2 ns) collinear Ising order is proximate to superconductivity in CeCoIn_{5} and is stabilized through hole doping with Hg.

6.
Phys Rev Lett ; 120(18): 187002, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29775349

RESUMEN

Unconventional superconductivity and magnetism are intertwined on a microscopic level in a wide class of materials. A new approach to this most fundamental and hotly debated issue focuses on the role of interactions between superconducting electrons and bosonic fluctuations at the interface between adjacent layers in heterostructures. Here we fabricate hybrid superlattices consisting of alternating atomic layers of the heavy-fermion superconductor CeCoIn_{5} and antiferromagnetic (AFM) metal CeRhIn_{5}, in which the AFM order can be suppressed by applying pressure. We find that the superconducting and AFM states coexist in spatially separated layers, but their mutual coupling via the interface significantly modifies the superconducting properties. An analysis of upper critical fields reveals that, upon suppressing the AFM order by applied pressure, the force binding superconducting electron pairs acquires an extreme strong-coupling nature. This demonstrates that superconducting pairing can be tuned nontrivially by magnetic fluctuations (paramagnons) injected through the interface.

7.
Proc Natl Acad Sci U S A ; 112(44): 13520-4, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483465

RESUMEN

The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2-δAs2 (δ ≈ 0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 E-/formular unit in CeNi2-δAs2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. The small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.

8.
Phys Rev Lett ; 114(12): 127001, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25860768

RESUMEN

Nuclear magnetic resonance (NMR) measurements on the ^{195}Pt nucleus in an aligned powder of the moderately heavy-fermion material U_{2}PtC_{2} are consistent with spin-triplet pairing in its superconducting state. Across the superconducting transition temperature and to much lower temperatures, the NMR Knight shift is temperature independent for field both parallel and perpendicular to the tetragonal c axis, expected for triplet equal-spin pairing superconductivity. The NMR spin-lattice relaxation rate 1/T_{1}, in the normal state, exhibits characteristics of ferromagnetic fluctuations, compatible with an enhanced Wilson ratio. In the superconducting state, 1/T_{1} follows a power law with temperature without a coherence peak giving additional support that U_{2}PtC_{2} is an unconventional superconductor. Bulk measurements of the ac susceptibility and resistivity indicate that the upper critical field exceeds the Pauli limiting field for spin-singlet pairing and is near the orbital limiting field, an additional indication for spin-triplet pairing.

9.
Phys Rev Lett ; 114(14): 146403, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25910144

RESUMEN

We investigated the electrical resistivity and heat capacity of 1% Cd-doped CeIrIn_{5} under hydrostatic pressure up to 2.7 GPa, near where long-range antiferromagnetic order is suppressed and bulk superconductivity suddenly reemerges. The pressure-induced T_{c} is close to that of pristine CeIrIn_{5} at 2.7 GPa, and no signatures of a quantum critical point under pressure support a local origin of the antiferromagnetic moments in Cd-CeIrIn_{5} at ambient pressure. Similarities between superconductors CeIrIn_{5} and CeCoIn_{5} in response to Cd substitutions suggest a common magnetic mechanism.

10.
Phys Rev Lett ; 113(24): 246403, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25541784

RESUMEN

We have used high-resolution neutron spectroscopy experiments to determine the complete spin wave spectrum of the heavy-fermion antiferromagnet CeRhIn5. The spin wave dispersion can be quantitatively reproduced with a simple frustrated J1-J2 model that also naturally explains the magnetic spin-spiral ground state of CeRhIn5 and yields a dominant in-plane nearest-neighbor magnetic exchange constant J0=0.74(3) meV. Our results pave the way to a quantitative understanding of the rich low-temperature phase diagram of the prominent CeTIn5 (T=Co, Rh, Ir) class of heavy-fermion materials.

11.
Phys Rev Lett ; 112(23): 236401, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24972218

RESUMEN

Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the "hidden order" (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.

12.
Nature ; 456(7220): 366-8, 2008 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19020616

RESUMEN

Superconductivity without phonons has been proposed for strongly correlated electron materials that are tuned close to a zero-temperature magnetic instability of itinerant charge carriers. Near this boundary, quantum fluctuations of magnetic degrees of freedom assume the role of phonons in conventional superconductors, creating an attractive interaction that 'glues' electrons into superconducting pairs. Here we show that superconductivity can arise from a very different spectrum of fluctuations associated with a local (or Kondo-breakdown) quantum critical point that is revealed in isotropic scattering of charge carriers and a sublinear, temperature-dependent electrical resistivity. At this critical point, accessed by applying pressure to the strongly correlated, local-moment antiferromagnet CeRhIn(5), magnetic and charge fluctuations coexist and produce electronic scattering that is maximal at the optimal pressure for superconductivity. This previously unanticipated source of pairing glue opens possibilities for understanding and discovering new unconventional forms of superconductivity.

13.
Nat Commun ; 14(1): 8239, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086824

RESUMEN

Electrons at the border of localization generate exotic states of matter across all classes of strongly correlated electron materials and many other quantum materials with emergent functionality. Heavy electron metals are a model example, in which magnetic interactions arise from the opposing limits of localized and itinerant electrons. This remarkable duality is intimately related to the emergence of a plethora of novel quantum matter states such as unconventional superconductivity, electronic-nematic states, hidden order and most recently topological states of matter such as topological Kondo insulators and Kondo semimetals and putative chiral superconductors. The outstanding challenge is that the archetypal Kondo lattice model that captures the underlying electronic dichotomy is notoriously difficult to solve for real materials. Here we show, using the prototypical strongly-correlated antiferromagnet CeIn3, that a multi-orbital periodic Anderson model embedded with input from ab initio bandstructure calculations can be reduced to a simple Kondo-Heisenberg model, which captures the magnetic interactions quantitatively. We validate this tractable Hamiltonian via high-resolution neutron spectroscopy that reproduces accurately the magnetic soft modes in CeIn3, which are believed to mediate unconventional superconductivity. Our study paves the way for a quantitative understanding of metallic quantum states such as unconventional superconductivity.

14.
Phys Rev Lett ; 108(2): 027001, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22324705

RESUMEN

We use heat-capacity measurements as a function of field rotation to identify the nodal gap structure of CeIrIn(5) at pressures to 2.05 GPa, deep inside its superconducting dome. A fourfold oscillation in the heat capacity at 0.3 K is observed for all pressures, but with its sign reversed between 1.50 and 0.90 GPa. On the basis of recent theoretical models for the field-angle-dependent specific heat, all data, including the sign reversal, imply a d(x(2)-y(2)) order parameter with nodes along [110], which constrains theoretical models of the pairing mechanism in CeIrIn(5).

15.
Phys Rev Lett ; 108(6): 066407, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22401097

RESUMEN

We report magnetic field orientation-dependent measurements of the superconducting upper critical field in high quality single crystals of URu(2)Si(2) and find the effective g factor estimated from the Pauli limit to agree remarkably well with that found in quantum oscillation experiments, both quantitatively and in the extreme anisotropy (≈10(3)) of the spin susceptibility. Rather than a strictly itinerant or purely local f-electron picture being applicable, the latter suggests the quasiparticles subject to pairing in URu(2)Si(2) to be "composite heavy fermions" formed from bound states between conduction electrons and local moments with a protected Ising behavior. Non-Kramers doublet local magnetic degrees of freedom suggested by the extreme anisotropy favor a local pairing mechanism.

16.
Phys Rev Lett ; 108(7): 077003, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22401243

RESUMEN

When antiferromagnetism and unconventional superconductivity coexist in CeRhIn(5) there is a significant temperature difference between resistively and thermodynamically determined transitions into the superconducting state. In this state, anisotropic transport near the superconducting transition reveals the emergence of textured superconducting planes that appear without a change in translational symmetry of the lattice. CeRhIn(5) is not unique in exhibiting these behaviors, indicating that textured superconductivity may be a general consequence of coexisting orders in correlated electron materials.

17.
Phys Rev Lett ; 108(24): 246403, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23004299

RESUMEN

The nature of the second-order phase transition that occurs in URu2Si2 at 17.5 K remains puzzling despite intensive research. A key question emerging in the field is whether a hybridization gap between the renormalized bands can be identified as the "hidden" order parameter. We report on the measurement of a hybridization gap in URu2Si2 employing a spectroscopic technique based on quasiparticle scattering. The differential conductance exhibits an asymmetric double-peak structure, a clear signature for a Fano resonance in a Kondo lattice. The hybridization gap opens well above 17.5 K, indicating that it is not the hidden order parameter. Our results put stringent constraints on the origin of the hidden order transition in URu2Si2 and demonstrate that quasiparticle scattering spectroscopy can probe the band renormalizations in a Kondo lattice via detection of a novel type of Fano resonance.

18.
Phys Rev Lett ; 109(18): 186402, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23215302

RESUMEN

We report a globally reversible effect of electronic tuning on the magnetic phase diagram in CeCoIn(5) driven by electron (Pt and Sn) and hole (Cd, Hg) doping. Consequently, we are able to extract the superconducting pair breaking component for hole and electron dopants with pressure and codoping studies, respectively. We find that these nominally nonmagnetic dopants have a remarkably weak pair breaking effect for a d-wave superconductor. The pair breaking is weaker for hole dopants, which induce magnetic moments, than for electron dopants. Furthermore, both Pt and Sn doping have a similar effect on superconductivity despite being on different dopant sites, arguing against the notion that superconductivity lives predominantly in the CeIn(3) planes of these materials. In addition, we shed qualitative understanding on the doping dependence with density functional theory calculations.

19.
Nature ; 440(7080): 65-8, 2006 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-16511490

RESUMEN

With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases. A maximum in the superconducting transition temperature T(c) develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T(c), preventing proof of a magnetic quantum-critical point. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T --> 0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model developed to explain field-induced magnetism in the high-T(c) copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn5.

20.
Nat Commun ; 13(1): 6129, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253344

RESUMEN

Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative. This poses the question of how local high-energy degrees of freedom become incorporated into a collective electronic state. Here, we use resonant inelastic x-ray scattering (RIXS) on CePd3 to clarify the fate of all relevant energy scales. We find that even spin-orbit excited states acquire pronounced momentum-dependence at low temperature-the telltale sign of hybridization with the underlying metallic state. Our results demonstrate how localized electronic degrees of freedom endow correlated metals with new properties, which is critical for a microscopic understanding of superconducting, electronic nematic, and topological states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA