Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(20): 11391-11397, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33682282

RESUMEN

Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1, was first discovered in a trace amount during the study of a known ZIF-CO3 -1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm- ). With a composition of Zn3 (mIm)5 (OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalyst for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications.

2.
J Colloid Interface Sci ; 634: 195-208, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36535158

RESUMEN

The design of multifunctional photocatalyst with strong redox performance is the key to achieve sustainable utilization of solar energy. In this study, an elegant S-scheme heterojunction photocatalyst was constructed between metal-free graphitic carbon nitride (g-C3N4) and noble-metal-free tungsten oxide (W18O49). As-established S-scheme heterojunction photocatalyst enabled multifunctional photocatalysis behavior, including hydrogen production, degradation (Rhodamine B) and bactericidal (Escherichia coli) properties, which represented extraordinary sustainability. Finite-difference time-domain (FDTD) simulations manifested that the integration of double-layer hollow g-C3N4 nanotubes with W18O49 nanowires could expand the light harvesting ability. Demonstrated by density functional theory (DFT) calculations and electron spin resonance (ESR) measurements, the S-scheme heterojunction not only promoted the separation of carriers, but also improved the redox ability of the catalyst. This work provides a theoretical basis for enhancing the photocatalytic performances and broadening the application field of photocatalysis.


Asunto(s)
Antibacterianos , Óxidos , Escherichia coli
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA