Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 18(10): e3000935, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33119582

RESUMEN

The ongoing digital revolution in the age of big data is opening new research opportunities. Culturomics and iEcology, two emerging research areas based on the analysis of online data resources, can provide novel scientific insights and inform conservation and management efforts. To date, culturomics and iEcology have been applied primarily in the terrestrial realm. Here, we advocate for expanding such applications to the aquatic realm by providing a brief overview of these new approaches and outlining key areas in which culturomics and iEcology are likely to have the highest impact, including the management of protected areas; fisheries; flagship species identification; detection and distribution of threatened, rare, and alien species; assessment of ecosystem status and anthropogenic impacts; and social impact assessment. When deployed in the right context with awareness of potential biases, culturomics and iEcology are ripe for rapid development as low-cost research approaches based on data available from digital sources, with increasingly diverse applications for aquatic ecosystems.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Animales Salvajes/fisiología , Sesgo , Especies en Peligro de Extinción , Explotaciones Pesqueras
2.
Environ Res ; 224: 115504, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796604

RESUMEN

Marine heatwaves (MHWs) are extreme weather events featuring abnormally high seawater temperature, and expected to increase in frequency, duration and severity over this century. The impacts of these phenomena on physiological performance of coral reef species require understanding. This study aimed to evaluate the effects of a simulated MHW (category IV; ΔT = +2 °C, 11 days) (after exposure and 10-day recovery period) on fatty acid (FA) composition (as a biochemical indicator) and energy budget (i.e., growth, G, excretion (faecal, F and nitrogenous losses, U), respiration, R and food consumption, C) of a juvenile tropical surgeonfish species (Zebrasoma scopas). Significant and different changes were found under MHW scenario for some of the most abundant FA and respective groups (i.e., an increase in the contents of 14:0, 18:1n-9, ΣMonounsaturated (ΣMUFA) and 18:2n-6; and a decrease in the levels of 16:0, ΣSaturated (ΣSFA), 18:1n-7, 22:5n-3 and ΣPolyunsaturated (ΣPUFA)). The contents of 16:0 and ΣSFA were also significantly lower after MHW exposure compared to control (CTRL). Additionally, lower feed efficiency (FE), relative growth rate (RGR) and specific growth rate in terms of wet weight (SGRw), as well as higher energy loss for respiration were observed under MHW exposure conditions in comparison with CTRL and MHW recovery period. The energy proportion channelled for faeces dominated the mode of energy allocation, followed by growth in both treatments (after exposure). After MHW recovery, this trend was reversed, and a higher percentage was spent for growth and a lower fraction for faeces than in the MHW exposure period. Overall, FA composition, growth rates and energy loss for respiration of Z. Scopas were the physiological parameters most influenced (mainly in a negative way) by an 11-day MHW event. The observed effects in this tropical species can be exacerbated with increasing intensity and frequency of these extreme events.


Asunto(s)
Ácidos Grasos , Perciformes , Animales , Ecosistema , Peces , Agua de Mar , Temperatura
3.
Mar Drugs ; 20(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36286418

RESUMEN

Tetrodotoxin (TTX) is a potent neurotoxin naturally occurring in terrestrial and marine organisms such as pufferfish. Due to the risk of TTX poisoning, fish of Tetraodontidae family and other puffer-related species must not be placed in the EU markets. This restriction applies to fish of the family Molidae even though no data on toxins' occurrence is available. In this study, the presence of TTX and its analogues was investigated in the main edible tissue (the white muscle) and the main xenobiotics storage organ (the liver) of ocean sunfish Mola spp. (n = 13) from the South Portuguese coast. HILIC-MS/MS analyses did not reveal TTX in the analyzed samples, suggesting an inexistent or very limited risk of TTX poisoning.


Asunto(s)
Tetraodontiformes , Animales , Tetrodotoxina/toxicidad , Tetrodotoxina/análisis , Espectrometría de Masas en Tándem , Neurotoxinas/análisis , Portugal/epidemiología , Océanos y Mares
4.
Anim Cogn ; 24(1): 23-32, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32651650

RESUMEN

Learning can occur through self-experience with the environment, or through the observation of others. The latter allows for adaptive behaviour without trial-and-error, thus maximizing individual fitness. Perhaps given their mostly solitary lifestyle, cuttlefish have seldomly been tested under observational learning scenarios. Here we used a multi-treatment design to disentangle if and how neurally immature cuttlefish Sepia officinalis hatchlings (up to 5 days) incorporate social information into their decision-making, when performing a task where inhibition of predatory behaviour is learned. In the classical social learning treatment using pre-trained demonstrators, observers did not register any predatory behaviour. In the inhibition by social learning treatment, using naïve (or sham) demonstrators, more observers than demonstrators learned the task, while also reaching learning criterion in fewer trials, and performing less number of attacks per trial. Moreover, the performance of demonstrator-observer pairs was highly correlated, indicating that the mere presence of conspecifics did not explain our results by itself. Additionally, observers always reported higher latency time to attack during trials, a trend that was reversed in the positive controls. Lastly, pre-exposure to the stimulus did not improve learning rates. Our findings reveal the vicarious capacity of these invertebrate newborns to learn modulation (inhibition) of predatory behaviour, potentially through emulation (i.e. affordance learning). Despite ongoing changes on neural organization during early ontogeny, cognitively demanding forms of learning are already present in cuttlefish newborns, facilitating behavioural adaptation at a critical life stage, and potentially improving individual fitness in the environment.


Asunto(s)
Sepia , Aprendizaje Social , Animales , Decapodiformes , Inhibición Psicológica , Aprendizaje
5.
Biol Lett ; 15(12): 20190618, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31795852

RESUMEN

Ocean acidification is one of the many consequences of climate change. Various studies suggest that marine organisms' behaviour will be impaired under high CO2. Here, we show that the cognitive performance of the cleaner wrasse, Labroides dimidiatus, has not suffered from the increase of CO2 from pre-industrial levels to today, and that the standing variation in CO2 tolerance offers potential for adaptation to at least 750 µatm. We acclimated cleaners over 30 days to five levels of pCO2, from pre-industrial to high future CO2 scenarios, before testing them in an ecologically relevant task-the ability to learn to prioritize an ephemeral food source over a permanent one. Fish learning abilities remained stable from pre-industrial to present-day pCO2. While performance was reduced under mid (750 µatm) and high CO2 (980 µatm) scenarios, under the former 36% of cleaners still solved the task. The presence of tolerant individuals reveals potential for adaptation, as long as selection pressure on cognitive performance is strong. However, the apparent absence of high CO2 tolerant fish, and potentially synergistic effects between various climate change stressors, renders the probability of further adaptation unlikely.


Asunto(s)
Dióxido de Carbono , Agua de Mar , Animales , Cognición , Peces , Concentración de Iones de Hidrógeno
6.
Biol Lett ; 15(1): 20180627, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30958222

RESUMEN

The dramatic decline of European eel ( Anguilla anguilla) populations over recent decades has attracted considerable attention and concern. Furthermore, little is known about the sensitivity of the early stages of eels to projected future environmental change. Here, we investigated, for the first time, the potential combined effects of ocean warming (OW; Δ + 4°C; 18°C) and acidification (OA; Δ - 0.4 pH units) on the survival and migratory behaviour of A. anguilla glass eels, namely their preference towards riverine cues (freshwater and geosmin). Recently arrived individuals were exposed to isolated and combined OW and OA conditions for 100 days, adjusting for the salinity gradients associated with upstream migration. A two-choice test was used to investigate migratory activity and shifts in preference towards freshwater environments. While OW decreased survival and increased migratory activity, OA appears to hinder migratory response, reducing the preference for riverine cues. Our results suggest that future conditions could potentially favour an early settlement of glass eels, reducing the proportion of fully migratory individuals. Further research into the effects of climate change on eel migration and habitat selection is needed to implement efficient conservation plans for this critically endangered species.


Asunto(s)
Anguilla , Migración Animal , Animales , Ecosistema , Concentración de Iones de Hidrógeno , Océanos y Mares
7.
Environ Res ; 169: 7-25, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30399468

RESUMEN

Pharmaceuticals, such as the antidepressant venlafaxine (VFX), have been frequently detected in coastal waters and marine biota, and there is a growing body of evidence that these pollutants can be toxic to non-target marine biota, even at low concentrations. Alongside, climate change effects (e.g. warming and acidification) can also affect marine species' physiological fitness and, consequently, compromising their ability to cope with the presence of pollutants. Yet, information regarding interactive effects between pollutants and climate change-related stressors is still scarce. Within this context, the present study aims to assess the differential ecotoxicological responses (antioxidant activity, heat shock response, protein degradation, endocrine disruption and neurotoxicity) of juvenile fish (Argyrosomus regius) tissues (muscle, gills, liver and brain) exposed to VFX (via water or feed), as well as to the interactive effects of warming (ΔT °C = +5 °C) and acidification (ΔpCO2 ~ +1000 µatm, equivalent to ΔpH = -0.4 units), using an integrated multi-biomarker response (IBR) approach. Overall, results showed that VFX toxicity was strongly influenced by the uptake pathway, as well as by warming and acidification. More significant changes (e.g. increases surpassing 100% in lipid peroxidation, LPO, heat shock response protein content, HSP70/HSC70, and total ubiquitin content, Ub,) and higher IBR index values were observed when VFX exposure occurred via water (i.e. average IBR = 19, against 17 in VFX-feed treatment). The co-exposure to climate change-related stressors either enhanced (e.g. glutathione S-transferases activity (GST) in fish muscle was further increased by warming) or attenuated the changes elicited by VFX (e.g. vitellogenin, VTG, liver content increased with VFX feed exposure acting alone, but not when co-exposed with acidification). Yet, increased stress severity was observed when the three stressors acted simultaneously, particularly in fish exposed to VFX via water (i.e. average IBR = 21). Hence, the distinct fish tissues responses elicited by the different scenarios emphasized the relevance of performing multi-stressors ecotoxicological studies, as such approach enables a better estimation of the environmental hazards posed by pollutants in a changing ocean and, consequently, the development of strategies to mitigate them.


Asunto(s)
Perciformes , Clorhidrato de Venlafaxina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores , Cambio Climático , Ecotoxicología , Concentración de Iones de Hidrógeno
8.
Environ Res ; 170: 168-177, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30583126

RESUMEN

Atmospheric carbon dioxide (CO2) levels are increasing at the fastest rate ever recorded, causing higher CO2 dissolution in the ocean, leading to a process known as ocean acidification (OA). Unless anthropogenic CO2 emissions are reduced, they are expected to reach ~900 ppm by the century's end, resulting in a 0.13-0.42 drop in the seawater pH levels. Since the transgenerational effects of high CO2 in marine organisms are still poorly understood at lower levels of biological organization (namely at the biochemical level), here we reared a key ecological relevant marine amphipod, Gammarus locusta, under control and high CO2 conditions for two generations. We measured several stress-related biochemical endpoints: i) oxidative damage [lipid peroxidation (LPO) and DNA damage]; ii) protein repair and removal mechanisms [heat shock proteins (HSPs) and ubiquitin (Ub)]; as well as iii) antioxidant responses [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione s-transferase (GST)] and total antioxidant capacity (TAC). The present results support the premise that exposure to high CO2 is expected to decrease survival rates in this species and cause within- and transgenerational oxidative damage. More specifically, the predicted upsurge of reactive oxygen and nitrogen species seemed to overwhelm the stimulated amphipod antioxidant machinery, which proved insufficient in circumventing protein damage within the parents. Additionally, negative effects of OA are potentially being inherited by the offspring, since the oxidative stress imposed in the parent's proteome appears to be restricting DNA repair mechanisms efficiency within the offspring's. Thus, we argue that a transgenerational exposure of G. locusta could further increase vulnerability to OA and may endanger the fitness and sustainability of natural populations.


Asunto(s)
Anfípodos/fisiología , Monitoreo del Ambiente , Agua de Mar/química , Animales , Dióxido de Carbono , Catalasa , Concentración de Iones de Hidrógeno , Peroxidación de Lípido , Estrés Oxidativo
9.
Artículo en Inglés | MEDLINE | ID: mdl-30978470

RESUMEN

Freezing, dehydration, salinity variations, hypoxia or anoxia are some of the environmental constraints that many organisms must frequently endure. Organisms adapted to these stressors often reduce their metabolic rates to maximize their chances of survival. However, upon recovery of environmental conditions and basal metabolic rates, cells are affected by an oxidative burst that, if uncontrolled, leads to (oxidative) cell damage and eventually death. Thus, a number of adapted organisms are able to increase their antioxidant defenses during an environmental/functional hypoxic transgression; a strategy that was interpreted in the 1990s as a "preparation for oxidative stress" (POS). Since that time, POS mechanisms have been identified in at least 83 animal species representing different phyla including Cnidaria, Nematoda, Annelida, Tardigrada, Echinodermata, Arthropoda, Mollusca and Chordata. Coinciding with the 20th anniversary of the postulation of the POS hypothesis, we compiled this review where we analyze a selection of examples of species showing POS-mechanisms and review the most recent advances in understanding the underlying molecular mechanisms behind those strategies that allow animals to survive in harsh environments.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Hipoxia , Estrés Oxidativo/fisiología , Animales , Anélidos/fisiología , Deshidratación/metabolismo , Congelación/efectos adversos , Moluscos/fisiología , Estrés Oxidativo/genética , Salinidad
10.
Ecotoxicology ; 28(6): 612-618, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31154538

RESUMEN

Wastewater effluents are teeming with organisms, nutrients and chemical substances which water treatment processes fail to remove. Among these substances, pharmaceuticals such as antidepressants are a frequent occurrence, and have been reported to lead to severe effects in the physiology and behaviour of non-target marine species across taxa. Venlafaxine (VFX) is one of the most consistently prescribed substances for the treatment of human depressive disorders, acting as a serotonin and norepinephrine reuptake inhibitor. In the present study, the potential effects of this antidepressant on the survival and key behaviours (i.e. movement, aggression and foraging) of white seabream (Diplodus sargus) larvae were addressed. Larvae were submitted to an acute exposure of two different VFX treatments (low concentration, 10 µg L-1; and high concentration, 100 µg L-1) for a total of 48 h. Sampling took place after 24 and 48 h of exposure. Overall, results showed a significant effect of a two-day exposure to VFX in larvae of D. sargus. Survival was significantly reduced by exposure to a high concentration, but behavioural effects of antidepressant exposure were subtle: i.e. increased attack frequency and temporary modulation of capture success. Further research efforts should be directed towards evaluating the potential chronic effects of antidepressants in marine species, if we are to anticipate possible pressures on natural populations, and effectively advice policymakers towards the investment in new and more efficient methods of wastewater treatments.


Asunto(s)
Rasgos de la Historia de Vida , Dorada/fisiología , Clorhidrato de Venlafaxina/efectos adversos , Contaminantes Químicos del Agua/efectos adversos , Agresión/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Conducta Alimentaria/efectos de los fármacos , Longevidad/efectos de los fármacos , Movimiento/efectos de los fármacos , Distribución Aleatoria
11.
Environ Res ; 164: 186-196, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29501006

RESUMEN

Climate change and chemical contamination are global environmental threats of growing concern for the scientific community and regulatory authorities. Yet, the impacts and interactions of both stressors (particularly ocean warming and emerging chemical contaminants) on physiological responses of marine organisms remain unclear and still require further understanding. Within this context, the main goal of this study was to assess, for the first time, the effects of warming (+ 5 °C) and accumulation of a polybrominated diphenyl ether congener (BDE-209, brominated flame retardant) through dietary exposure on energy budget of the juvenile white seabream (Diplodus sargus). Specifically, growth (G), routine metabolism (R), excretion (faecal, F and nitrogenous losses, U) and food consumption (C) were calculated to obtain the energy budget. The results demonstrated that the energy proportion spent for G dominated the mode of the energy allocation of juvenile white seabream (56.0-67.8%), especially under the combined effect of warming plus BDE-209 exposure. Under all treatments, the energy channelled for R varied around 26% and a much smaller percentage was channelled for excretion (F: 4.3-16.0% and U: 2.3-3.3%). An opposite trend to G was observed to F, where the highest percentage (16.0 ±â€¯0.9%) was found under control temperature and BDE-209 exposure via diet. In general, the parameters were significantly affected by increased temperature and flame retardant exposure, where higher levels occurred for: i) wet weight, relative growth rate, protein and ash contents under warming conditions, ii) only for O:N ratio under BDE-209 exposure via diet, and iii) for feed efficiency, ammonia excretion rate, routine metabolic rate and assimilation efficiency under the combination of both stressors. On the other hand, decreased viscerosomatic index was observed under warming and lower fat content was observed under the combined effect of both stressors. Overall, under future warming and chemical contamination conditions, fish energy budget was greatly affected, which may dictate negative cascading impacts at population and community levels. Further research combining other climate change stressors (e.g. acidification and hypoxia) and emerging chemical contaminants are needed to better understand and forecast such biological effects in a changing ocean.


Asunto(s)
Cambio Climático , Peces , Retardadores de Llama , Animales , Organismos Acuáticos , Peces/fisiología , Calentamiento Global , Dinámica Poblacional , Temperatura
12.
Artículo en Inglés | MEDLINE | ID: mdl-29158138

RESUMEN

Future climate change scenarios predict threatening outcomes to biodiversity. Available empirical data concerning biological response of freshwater fish to climate change remains scarce. In this study, we investigated the physiological and biochemical responses of two Iberian freshwater fish species (Squalius carolitertii and the endangered S. torgalensis), inhabiting different climatic conditions, to projected future scenarios of warming (+3°C) and acidification (ΔpH=-0.4). Herein, metabolic enzyme activities of glycolytic (citrate synthase - CS, lactate dehydrogenase - LDH) and antioxidant (glutathione S-transferase, catalase and superoxide dismutase) pathways, as well as the heat shock response (HSR) and lipid peroxidation were determined. Our results show that, under current water pH, warming causes differential interspecific changes on LDH activity, increasing and decreasing its activity in S. carolitertii and in S. torgalensis, respectively. Furthermore, the synergistic effect of warming and acidification caused an increase in LDH activity of S. torgalensis, comparing with the warming condition. As for CS activity, acidification significantly decreased its activity in S. carolitertii whereas in S. torgalensis no significant effect was observed. These results suggest that S. carolitertii is more vulnerable to climate change, possibly as the result of its evolutionary acclimatization to milder climatic condition, while S. torgalensis evolved in the warmer Mediterranean climate. However, significant changes in HSR were observed under the combined warming and acidification (S. carolitertii) or under acidification (S. torgalensis). Our results underlie the importance of conducting experimental studies and address species endpoint responses under projected climate change scenarios to improve conservation strategies, and to safeguard endangered freshwater fish.


Asunto(s)
Aclimatación , Ácidos/metabolismo , Cyprinidae/fisiología , Agua Dulce , Respuesta al Choque Térmico , Calor , Animales , Antioxidantes/metabolismo , Enzimas/metabolismo , Glucólisis , Concentración de Iones de Hidrógeno , Peroxidación de Lípido , Estrés Oxidativo , Especificidad de la Especie
13.
Biol Lett ; 13(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28356408

RESUMEN

Sharks play a key role in the structure of marine food webs, but are facing major threats due to overfishing and habitat degradation. Although sharks are also assumed to be at relatively high risk from climate change due to a low intrinsic rate of population growth and slow rates of evolution, ocean acidification (OA) has not, until recently, been considered a direct threat. New studies have been evaluating the potential effects of end-of-century elevated CO2 levels on sharks and their relatives' early development, physiology and behaviour. Here, we review those findings and use a meta-analysis approach to quantify the overall direction and magnitude of biological responses to OA in the species of sharks that have been investigated to date. While embryo survival and development time are mostly unaffected by elevated CO2, there are clear effects on body condition, growth, aerobic potential and behaviour (e.g. lateralization, hunting and prey detection). Furthermore, studies to date suggest that the effects of OA could be as substantial as those due to warming in some species. A major limitation is that all past studies have involved relatively sedentary, benthic sharks that are capable of buccal ventilation-no studies have investigated pelagic sharks that depend on ram ventilation. Future research should focus on species with different life strategies (e.g. pelagic, ram ventilators), climate zones (e.g. polar regions), habitats (e.g. open ocean), and distinct phases of ontogeny in order to fully predict how OA and climate change will impact higher-order predators and therefore marine ecosystem dynamics.


Asunto(s)
Dióxido de Carbono/fisiología , Océanos y Mares , Tiburones/fisiología , Animales , Dióxido de Carbono/toxicidad , Cambio Climático , Concentración de Iones de Hidrógeno , Conducta Predatoria , Fenómenos Fisiológicos Respiratorios , Agua de Mar/química , Tiburones/embriología
14.
Environ Res ; 149: 77-85, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27179934

RESUMEN

Warming is an expected impact of climate change that will affect coastal areas in the future. These areas are also subjected to strong anthropogenic pressures leading to chemical contamination. Yet, the consequences of both factors for marine ecosystems, biota and consumers are still unknown. The present work aims to investigate, for the first time, the effect of temperature increase on bioaccumulation and elimination of mercury [(total mercury (THg) and methylmercury (MeHg)] in three tissues (muscle, liver, and brain) of a commercially important seafood species - European seabass (Dicentrarchus labrax). Fish were exposed to the ambient temperature currently used in seabass rearing (18°C) and to the expected ocean warming (+4°C, i.e. 22°C), as well as dietary MeHg during 28 days, followed by a depuration period of 28 days fed with a control diet. In both temperature exposures, higher MeHg contents were observed in the brain, followed by the muscle and liver. Liver registered the highest elimination percentages (EF; up to 64% in the liver, 20% in the brain, and 3% in the muscle). Overall, the results clearly indicate that a warming environment promotes MeHg bioaccumulation in all tissues (e.g. highest levels in brain: 8.1mgkg(-1) ww at 22°C against 6.2mgkg(-1) ww at 18°C after 28 days of MeHg exposure) and hampers MeHg elimination (e.g. liver EF decreases after 28 days of depuration: from 64.2% at 18°C to 50.3% at 22°C). These findings suggest that seafood safety may be compromised in a warming context, particularly for seafood species with contaminant concentrations close to the current regulatory levels. Hence, results point out the need to strengthen research in this area and to revise and/or adapt the current recommendations regarding human exposure to chemical contaminants through seafood consumption, in order to integrate the expected effects of climate change.


Asunto(s)
Lubina/metabolismo , Exposición a Riesgos Ambientales , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Alimentos Marinos/análisis , Contaminantes Químicos del Agua/metabolismo , Animales , Encéfalo/metabolismo , Cambio Climático , Monitoreo del Ambiente , Calor , Hígado/metabolismo , Mercurio/química , Compuestos de Metilmercurio/química , Músculos/metabolismo , Portugal , Contaminantes Químicos del Agua/química
15.
Proc Biol Sci ; 281(1793)2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25209942

RESUMEN

Sharks are one of the most threatened groups of marine animals worldwide, mostly owing to overfishing and habitat degradation/loss. Although these cartilaginous fish have evolved to fill many ecological niches across a wide range of habitats, they have limited capability to rapidly adapt to human-induced changes in their environments. Contrary to global warming, ocean acidification was not considered as a direct climate-related threat to sharks. Here we show, for the first time, that an early ontogenetic acclimation process of a tropical shark (Chiloscyllium punctatum) to the projected scenarios of ocean acidification (ΔpH = 0.5) and warming (+4°C; 30°C) for 2100 elicited significant impairments on juvenile shark condition and survival. The mortality of shark embryos at the present-day thermal scenarios was 0% both at normocapnic and hypercapnic conditions. Yet routine metabolic rates (RMRs) were significantly affected by temperature, pH and embryonic stage. Immediately after hatching, the Fulton condition of juvenile bamboo sharks was significantly different in individuals that experienced future warming and hypercapnia; 30 days after hatching, survival rapidly declined in individuals experiencing both ocean warming and acidification (up to 44%). The RMR of juvenile sharks was also significantly affected by temperature and pH. The impact of low pH on ventilation rates was significant only under the higher thermal scenario. This study highlights the need of experimental-based risk assessments of sharks to climate change. In other words, it is critical to directly assess risk and vulnerability of sharks to ocean acidification and warming, and such effort can ultimately help managers and policy-makers to take proactive measures targeting most endangered species.


Asunto(s)
Cambio Climático , Agua de Mar/química , Tiburones/genética , Aclimatación , Animales , Calentamiento Global , Concentración de Iones de Hidrógeno , Océanos y Mares , Tiburones/embriología , Tiburones/fisiología , Clima Tropical
16.
Glob Chang Biol ; 20(10): 3068-79, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24771544

RESUMEN

Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health and structuring of tropical coastal communities (e.g. coral reefs).


Asunto(s)
Aclimatación/fisiología , Antioxidantes/metabolismo , Cambio Climático , Crustáceos/fisiología , Enzimas/metabolismo , Calor , Estrés Fisiológico , Animales , Organismos Acuáticos , Crustáceos/metabolismo , Respuesta al Choque Térmico , Peroxidación de Lípido , Especificidad de la Especie , Simbiosis
17.
J Exp Biol ; 217(Pt 12): 2062-70, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24625652

RESUMEN

Early life stages of many marine organisms are being challenged by rising seawater temperature and CO2 concentrations, but their physiological responses to these environmental changes still remain unclear. In the present study, we show that future predictions of ocean warming (+4°C) and acidification (ΔpH=0.5 units) may compromise the development of early life stages of a highly commercial teleost fish, Solea senegalensis. Exposure to future conditions caused a decline in hatching success and larval survival. Growth, metabolic rates and thermal tolerance increased with temperature but decreased under acidified conditions. Hypercapnia and warming amplified the incidence of deformities by 31.5% (including severe deformities such as lordosis, scoliosis and kyphosis), while promoting the occurrence of oversized otoliths (109.3% increase). Smaller larvae with greater skeletal deformities and larger otoliths may face major ecophysiological challenges, which might potentiate substantial declines in adult fish populations, putting in jeopardy the species' fitness under a changing ocean.


Asunto(s)
Huesos/anomalías , Cambio Climático , Peces Planos/anomalías , Peces Planos/fisiología , Membrana Otolítica/embriología , Reproducción , Animales , Huesos/anatomía & histología , Dióxido de Carbono/química , Peces Planos/crecimiento & desarrollo , Calor , Concentración de Iones de Hidrógeno , Longevidad , Membrana Otolítica/anatomía & histología , Presión Parcial
18.
J Exp Biol ; 217(Pt 4): 518-25, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24523499

RESUMEN

Little is known about the capacity of early life stages to undergo hypercapnic and thermal acclimation under the future scenarios of ocean acidification and warming. Here, we investigated a comprehensive set of biological responses to these climate change-related variables (2°C above winter and summer average spawning temperatures and ΔpH=0.5 units) during the early ontogeny of the squid Loligo vulgaris. Embryo survival rates ranged from 92% to 96% under present-day temperature (13-17°C) and pH (8.0) scenarios. Yet, ocean acidification (pH 7.5) and summer warming (19°C) led to a significant drop in the survival rates of summer embryos (47%, P<0.05). The embryonic period was shortened by increasing temperature in both pH treatments (P<0.05). Embryo growth rates increased significantly with temperature under present-day scenarios, but there was a significant trend reversal under future summer warming conditions (P<0.05). Besides pronounced premature hatching, a higher percentage of abnormalities was found in summer embryos exposed to future warming and lower pH (P<0.05). Under the hypercapnic scenario, oxygen consumption rates decreased significantly in late embryos and newly hatched paralarvae, especially in the summer period (P<0.05). Concomitantly, there was a significant enhancement of the heat shock response (HSP70/HSC70) with warming in both pH treatments and developmental stages. Upper thermal tolerance limits were positively influenced by acclimation temperature, and such thresholds were significantly higher in late embryos than in hatchlings under present-day conditions (P<0.05). In contrast, the upper thermal tolerance limits under hypercapnia were higher in hatchlings than in embryos. Thus, we show that the stressful abiotic conditions inside the embryo's capsules will be exacerbated under near-future ocean acidification and summer warming scenarios. The occurrence of prolonged embryogenesis along with lowered thermal tolerance limits under such conditions is expected to negatively affect the survival success of squid early life stages during the summer spawning period, but not winter spawning.


Asunto(s)
Decapodiformes/fisiología , Embrión no Mamífero/fisiología , Agua de Mar/química , Temperatura , Aclimatación , Animales , Cambio Climático , Decapodiformes/embriología , Desarrollo Embrionario , Respuesta al Choque Térmico , Concentración de Iones de Hidrógeno , Larva/crecimiento & desarrollo , Larva/fisiología , Océanos y Mares , Consumo de Oxígeno , Estaciones del Año
19.
J Exp Biol ; 217(Pt 14): 2555-68, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24855676

RESUMEN

The jumbo squid, Dosidicus gigas, can survive extended forays into the oxygen minimum zone (OMZ) of the Eastern Pacific Ocean. Previous studies have demonstrated reduced oxygen consumption and a limited anaerobic contribution to ATP production, suggesting the capacity for substantial metabolic suppression during hypoxic exposure. Here, we provide a more complete description of energy metabolism and explore the expression of proteins indicative of transcriptional and translational arrest that may contribute to metabolic suppression. We demonstrate a suppression of total ATP demand under hypoxic conditions (1% oxygen, PO2 =0.8 kPa) in both juveniles (52%) and adults (35%) of the jumbo squid. Oxygen consumption rates are reduced to 20% under hypoxia relative to air-saturated controls. Concentrations of arginine phosphate (Arg-P) and ATP declined initially, reaching a new steady state (~30% of controls) after the first hour of hypoxic exposure. Octopine began accumulating after the first hour of hypoxic exposure, once Arg-P breakdown resulted in sufficient free arginine for substrate. Octopine reached levels near 30 mmol g(-1) after 3.4 h of hypoxic exposure. Succinate did increase through hypoxia but contributed minimally to total ATP production. Glycogenolysis in mantle muscle presumably serves to maintain muscle functionality and balance energetics during hypoxia. We provide evidence that post-translational modifications on histone proteins and translation factors serve as a primary means of energy conservation and that select components of the stress response are altered in hypoxic squids. Reduced ATP consumption under hypoxia serves to maintain ATP levels, prolong fuel store use and minimize the accumulation of acidic intermediates of anaerobic ATP-generating pathways during prolonged diel forays into the OMZ. Metabolic suppression likely limits active, daytime foraging at depth in the core of the OMZ, but confers an energetic advantage over competitors that must remain in warm, oxygenated surface waters. Moreover, the capacity for metabolic suppression provides habitat flexibility as OMZs expand as a result of climate change.


Asunto(s)
Decapodiformes/metabolismo , Hipoxia/metabolismo , Músculos/metabolismo , Consumo de Oxígeno/fisiología , Adaptación Fisiológica , Animales , Metabolismo Energético , Oxígeno/química , Océano Pacífico , Procesamiento Proteico-Postraduccional/fisiología
20.
Mar Drugs ; 12(7): 3929-52, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24983638

RESUMEN

The chemical diversity associated with marine natural products (MNP) is unanimously acknowledged as the "blue gold" in the urgent quest for new drugs. Consequently, a significant increase in the discovery of MNP published in the literature has been observed in the past decades, particularly from marine invertebrates. However, it remains unclear whether target metabolites originate from the marine invertebrates themselves or from their microbial symbionts. This issue underlines critical challenges associated with the lack of biomass required to supply the early stages of the drug discovery pipeline. The present review discusses potential solutions for such challenges, with particular emphasis on innovative approaches to culture invertebrate holobionts (microorganism-invertebrate assemblages) through in toto aquaculture, together with methods for the discovery and initial production of bioactive compounds from these microbial symbionts.


Asunto(s)
Productos Biológicos , Descubrimiento de Drogas , Invertebrados/metabolismo , Biología Marina , Microbiología del Agua , Animales , Acuicultura , Cnidarios/metabolismo , Moluscos/metabolismo , Poríferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA