Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Am J Physiol Cell Physiol ; 325(5): C1276-C1293, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37746697

RESUMEN

Disuse-induced muscle atrophy is a common clinical problem observed mainly in older adults, intensive care units patients, or astronauts. Previous studies presented biological sex divergence in progression of disuse-induced atrophy along with differential changes in molecular mechanisms possibly underlying muscle atrophy. The aim of this study was to perform transcriptomic profiling of male and female mice during the onset and progression of unloading disuse-induced atrophy. Male and female mice underwent hindlimb unloading (HU) for 24, 48, 72, and 168 h (n = 8/group). Muscles were weighed for each cohort and gastrocnemius was used for RNA-sequencing analysis. Females exhibited muscle loss as early as 24 h of HU, whereas males after 168 h of HU. In males, pathways related to proteasome degradation were upregulated throughout 168 h of HU, whereas in females these pathways were upregulated up to 72 h of HU. Lcn2, a gene contributing to regulation of myogenesis, was upregulated by 6.46- to 19.86-fold across all time points in females only. A reverse expression of Fosb, a gene related to muscle degeneration, was observed between males (4.27-fold up) and females (4.57-fold down) at 24-h HU. Mitochondrial pathways related to tricarboxylic acid (TCA) cycle were highly downregulated at 168 h of HU in males, whereas in females this downregulation was less pronounced. Collagen-related pathways were consistently downregulated throughout 168 h of HU only in females, suggesting a potential biological sex-specific protective mechanism against disuse-induced fibrosis. In conclusion, females may have protection against HU-induced skeletal muscle mitochondrial degeneration and fibrosis through transcriptional mechanisms, although they may be more vulnerable to HU-induced muscle wasting compared with males.NEW & NOTEWORTHY Herein, we have assessed the transcriptomic response across biological sexes during the onset and progression of unloading disuse-induced atrophy in mice. We have demonstrated an inverse expression of Fosb between males and females, as well as differentially timed patterns of expressing atrophy-related pathways between sexes that are concomitant to the accelerated atrophy in females. We also identified in females signs of mechanisms to combat disuse-induced mitochondrial degeneration and fibrosis.


Asunto(s)
Suspensión Trasera , Transcriptoma , Humanos , Ratones , Masculino , Femenino , Animales , Anciano , Suspensión Trasera/fisiología , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Fibrosis , Miembro Posterior/metabolismo
2.
BMC Genomics ; 24(1): 374, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403010

RESUMEN

BACKGROUND: Cancer-cachexia (CC) is a debilitating condition affecting up to 80% of cancer patients and contributing to 40% of cancer-related deaths. While evidence suggests biological sex differences in the development of CC, assessments of the female transcriptome in CC are lacking, and direct comparisons between sexes are scarce. This study aimed to define the time course of Lewis lung carcinoma (LLC)-induced CC in females using transcriptomics, while directly comparing biological sex differences. RESULTS: We found the global gene expression of the gastrocnemius muscle of female mice revealed biphasic transcriptomic alterations, with one at 1 week following tumor allograft and another during the later stages of cachexia development. The early phase was associated with the upregulation of extracellular-matrix pathways, while the later phase was characterized by the downregulation of oxidative phosphorylation, electron transport chain, and TCA cycle. When DEGs were compared to a known list of mitochondrial genes (MitoCarta), ~ 47% of these genes were differently expressed in females exhibiting global cachexia, suggesting transcriptional changes to mitochondrial gene expression happens concomitantly to functional impairments previously published. In contrast, the JAK-STAT pathway was upregulated in both the early and late stages of CC. Additionally, we observed a consistent downregulation of Type-II Interferon signaling genes in females, which was associated with protection in skeletal muscle atrophy despite systemic cachexia. Upregulation of Interferon signaling was noted in the gastrocnemius muscle of cachectic and atrophic male mice. Comparison of female tumor-bearing mice with males revealed ~ 70% of DEGs were distinct between sexes in cachectic animals, demonstrating dimorphic mechanisms of CC. CONCLUSION: Our findings suggest biphasic disruptions in the transcriptome of female LLC tumor-bearing mice: an early phase associated with ECM remodeling and a late phase, accompanied by the onset of systemic cachexia, affecting overall muscle energy metabolism. Notably, ~ 2/3 of DEGs in CC are biologically sex-specific, providing evidence of dimorphic mechanisms of cachexia between sexes. Downregulation of Type-II Interferon signaling genes appears specific to CC development in females, suggesting a new biological sex-specific marker of CC not reliant on the loss of muscle mass, that might represent a protective mechanism against muscle loss in CC in female mice.


Asunto(s)
Caquexia , Carcinoma Pulmonar de Lewis , Femenino , Masculino , Ratones , Animales , Caquexia/genética , Caquexia/metabolismo , Caquexia/patología , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Carcinoma Pulmonar de Lewis/complicaciones , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Transcriptoma , Interferones/metabolismo
3.
Int J Eat Disord ; 56(3): 483-500, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36529682

RESUMEN

OBJECTIVE: Conduct a systematic review on muscle size and strength in individuals with anorexia nervosa (AN). METHOD: In accordance with PRISMA guidelines, we searched Pubmed for articles published between 1995 and 2022 using a combination of search terms related to AN and muscle size, strength, or metabolism. After two authors screened articles and extracted data, 30 articles met inclusion criteria. Data were coded, and a risk bias was conducted for each study. RESULTS: The majority of studies focused on muscle size/lean mass (60%, n = 18) and energy expenditure (33%, n = 9), with few studies (17%, n = 5) investigating muscle function or possible mechanisms underlying muscle size (20%, n = 6). Studies supported that individuals with AN have smaller muscle size and reduced energy expenditure relative to controls. In some studies (33%, n = 10) recovery from AN was not sufficient to restore muscle mass or function. Mechanisms underlying short and long-term musculoskeletal alterations have not been thoroughly explored. DISCUSSION: Muscle mass and strength loss may be an unexplored component of physiological deterioration during and after AN. More research is necessary to understand intramuscular alterations during AN and interventions to facilitate muscle mass and functional gain following weight restoration in AN. PUBLIC SIGNIFICANCE: Muscle health is important for optimal health and is reduced in individuals with AN. However, we do not understand how muscle is altered at the cellular level throughout the course of AN. Here we review what is currently known regarding muscle health during AN and with weight restoration.


OBJETIVO: Realizar una revisión sistemática sobre el tamaño y la fuerza muscular en individuos que padecen anorexia nerviosa (AN). MÉTODO: De acuerdo con las guías PRISMA, se realizaron búsquedas en Pubmed de artículos publicados entre 1995 y 2022 mediante una combinación de términos de búsqueda relacionados con la anorexia nerviosa y el tamaño, la fuerza o el metabolismo muscular. Después de que dos autores examinaron los artículos y extrajeron los datos, 30 artículos cumplieron los criterios de inclusión. Se codificaron los datos y se realizó un sesgo de riesgo para cada estudio. RESULTADOS: La mayoría de los estudios se enfocaron en el tamaño muscular/masa magra (60%, n=18) y el gasto energético (33%, n=9), con pocos estudios (17%, n=5) investigando la función muscular o los posibles mecanismos subyacentes al tamaño muscular (20%, n=6). Los estudios apoyaron que los individuos que padecen anorexia nerviosa tienen un tamaño muscular más pequeño y un gasto de energía reducido en relación con los controles. En algunos estudios (33%, n = 10) la recuperación de la anorexia nerviosa no fue suficiente para restaurar la masa muscular o la función. Los mecanismos subyacentes a las alteraciones musculoesqueléticas a corto y largo plazo no se han explorado a fondo. DISCUSIÓN: La pérdida de masa muscular y fuerza puede ser un componente inexplorado del deterioro fisiológico durante y después de la AN. Se necesita más investigación para comprender las alteraciones intramusculares durante la anorexia nerviosa y las intervenciones para facilitar la masa muscular y la ganancia funcional después de la restauración del peso en la anorexia nerviosa.


Asunto(s)
Anorexia Nerviosa , Humanos , Músculos
4.
Cell Biochem Funct ; 41(4): 478-489, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37150891

RESUMEN

Cachexia is characterized by losses in lean body mass and its progression results in worsened quality of life and exacerbated outcomes in cancer patients. However, the role and impact of fibrosis during the early stages and development of cachexia in under-investigated. The purpose of this study was to determine if fibrosis occurs during cachexia development, and to evaluate this in both sexes. Female and male C57BL6/J mice were injected with phosphate-buffered saline or Lewis Lung Carcinoma (LLC) at 8-week of age, and tumors were allowed to develop for 1, 2, 3, or 4 weeks. 3wk and 4wk female tumor-bearing mice displayed a dichotomy in tumor growth and were reassigned to high tumor (HT) and low tumor (LT) groups. In vitro analyses were also performed on cocultured C2C12 and 3T3 cells exposed to LLC conditioned media. Immunohistochemistry and quantitative polymerase chain reaction (qPCR) analysis were used to investigate fibrosis and fibrosis-related signaling in skeletal muscle. Collagen deposition in skeletal muscle was increased in the 1wk, LT, and HT groups in female mice. However, collagen deposition was only increased in the 4wk group in male mice. In general, female mice displayed earlier alterations in extracellular matrix (ECM)-related genes beginning at 1wk post-LLC injection. Whereas this was not seen in males. While overall tumor burden is tightly correlated to cachexia development in both sexes, fibrotic development is not. Male mice did not exhibit early-stage alterations in ECM-related genes contrary to what was noted in female mice.


Asunto(s)
Caquexia , Carcinoma Pulmonar de Lewis , Masculino , Femenino , Animales , Ratones , Caquexia/etiología , Caquexia/patología , Calidad de Vida , Músculo Esquelético/patología , Carcinoma Pulmonar de Lewis/complicaciones , Carcinoma Pulmonar de Lewis/patología , Ratones Endogámicos C57BL
5.
Am J Physiol Endocrinol Metab ; 322(3): E278-E292, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35068192

RESUMEN

microRNAs (miRs) are linked to various human diseases including type 2 diabetes mellitus (T2DM) and emerging evidence suggests that miRs may serve as potential therapeutic targets. Lower miR-16 content is consistent across different models of T2DM; however, the role of miR-16 in muscle metabolic health is still elusive. Therefore, the purpose of this study was to investigate how deletion of miR-16 in mice affects skeletal muscle metabolic health and contractile function in both sexes. This study was conducted using both 1) in vitro and 2) in vivo experiments. In in vitro experiments, we used C2C12 myoblasts to test if inhibition or overexpression of miR-16 affected insulin-mediated glucose handling. In in vivo experiments, we generated muscle-specific miR-16 knockout (KO) mice fed a high-fat diet (HFD) to assess how miR-16 content impacts metabolic and contractile properties including glucose tolerance, insulin sensitivity, muscle contractile function, protein anabolism, and mitochondrial network health. In in vitro experiments, although inhibition of miR-16 induced impaired insulin signaling (P = 0.002) and glucose uptake (P = 0.014), overexpression of miR-16 did not attenuate lipid overload-induced insulin resistance using the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol. In in vivo experiments, miR-16 deletion induced both impaired muscle contractility (P = 0.031-0.033), and mitochondrial network health (P = 0.008-0.018) in both sexes. However, although males specifically exhibited impaired insulin sensitivity following miR-16 deletion (P = 0.030), female KO mice showed pronounced glucose intolerance (P = 0.046), corresponding with lower muscle weights (P = 0.015), and protein hyperanabolism (P = 0.023). Our findings suggest distinct sex differences in muscle adaptation in response to miR-16 deletion and miR-16 may serve as a key regulator for metabolic dysregulation in T2DM.NEW & NOTEWORTHY We set to investigate the role of miR-16 in skeletal muscle during diet-induced insulin resistance. Our data provide novel evidence that the lack of miR-16 induced multiple aberrations in insulin sensitivity, muscle contractility, mitochondrial network health, and protein turnover in a sex-dependent manner. Interestingly, miR-16 deletion leads to insulin resistance in males and exacerbated glucose intolerance in females, suggesting different mechanisms of metabolic dysregulation with a lack of miR-16 between sexes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Resistencia a la Insulina , MicroARNs , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo
6.
Exp Physiol ; 106(12): 2472-2488, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34569104

RESUMEN

NEW FINDINGS: What is the central question of this study? Is the oestrous cycle affected during disuse atrophies and, if so, how are oestrous cycle changes related to musculoskeletal outcomes? What is the main finding and its importance? Rodent oestrous cycles were altered during disuse atrophy, which was correlated with musculoskeletal outcomes. However, the oestrous cycle did not appear to be changed by Lewis lung carcinoma, which resulted in no differences in muscle size in comparison to healthy control animals. These findings suggest a relationship between the oestrous cycle and muscle size during atrophic pathologies. ABSTRACT: Recent efforts have focused on improving our understanding of female muscle physiology during exposure to muscle atrophic stimuli. A key feature of female rodent physiology is the oestrous cycle. However, it is not known how such stimuli interact with the oestrous cycle to influence muscle health. In this study, we investigated the impact of muscle atrophic stimuli on the oestrous cycle and how these alterations are correlated with musculoskeletal outcomes. A series of experiments were performed in female rodents, including hindlimb unloading (HU), HU followed by 24 h of reloading, HU combined with dexamethasone treatment, and Lewis lung carcinoma. The oestrous cycle phase was assessed throughout each intervention and correlated with musculoskeletal outcomes. Seven or 14 days of HU increased the duration in dioestrus or metoestrus (D/M; low hormones) and was negatively correlated with gastrocnemius mass. Time spent in D/M was also negatively correlated with changes in grip strength and bone density after HU, and with muscle recovery 24 h after the cessation of HU. The addition of dexamethasone strengthened these relationships between time in D/M and reduced musculoskeletal outcomes. However, in animals with Lewis lung carcinoma, oestrous cyclicity did not differ from that of control animals, and time spent in D/M was not correlated with either gastrocnemius mass or tumour burden. In vitro experiments suggested that enhanced protein synthesis induced by estrogen might protect against muscle atrophy. In conclusion, muscle atrophic insults are correlated with changes in the oestrous cycle, which are associated with deterioration in musculoskeletal outcomes. The magnitude of oestrous cycle alterations depends on the atrophic stimuli.


Asunto(s)
Trastornos Musculares Atróficos , Roedores , Animales , Femenino , Suspensión Trasera/fisiología , Músculo Esquelético/fisiología , Atrofia Muscular/patología , Trastornos Musculares Atróficos/metabolismo , Trastornos Musculares Atróficos/patología
7.
Ann Nutr Metab ; 76 Suppl 1: 67-68, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33780930

RESUMEN

BACKGROUND: Debate continues over whether or not individuals with low total water intake (TWI) are in a chronic fluid deficit (i.e., low total body water) [1]. When women with habitually low TWI (1.6 ± 0.5 L/day) increased their fluid intake (3.5 ± 0.1 L/day) for 4 days 24-h urine osmolality decreased, but there was no change in body weight, a proxy for total body water (TBW) [2]. In a small (n = 5) study of adult men, there were no observable changes in TBW, as measured by bioelectrical impedance, after increasing TWI for 4 weeks [3]. However, body weight increased and salivary osmolality decreased indicating that the study may have been underpowered to detect changes in TBW. Further, no studies to date have measured changes in blood volume (BV) when TWI is increased. OBJECTIVES: Therefore, the purpose of this study was to identify individuals with habitually low fluid intake and determine if increasing TWI, for 14 days, resulted in changes in TBW or BV. METHODS: In order to identify individuals with low TWI, 889 healthy adults were screened. Participants with a self-reported TWI less than 1.8 L/day (men) or 1.2 L/day (women), and a 24-h urine osmolality greater than 800 mOsm were included in the intervention phase of the study. For the intervention phase, 15 participants were assigned to the experimental group and 8 participants were assigned to the control group. The intervention period lasted for 14 days and consisted of 2 visits to our laboratory: one before the intervention (baseline) and 14 days into the intervention (14-day follow-up). At these visits, BV was measured using a CO-rebreathe procedure and deuterium oxide (D2O) was administered to measure TBW. Urine samples were collected immediately prior, and 3-8 h after the D2O dose to allow for equilibration. Prior to each visit, participants collected 24-h urine to measure 24-h hydration status. After the baseline visit, the experimental group increased their TWI to 3.7 L for males and 2.7 L for females in order to meet the current Institute of Medicine recommendations for TWI. RESULTS: Twenty-four-hour urine osmolality decreased (-438.7 ± 362.1 mOsm; p < 0.001) and urine volume increased (1,526 ± 869 mL; p < 0.001) in the experimental group from baseline, while there were no differences in osmolality (-74.7 ± 572 mOsm; p = 0.45), or urine volume (-32 ± 1,376 mL; p = 0.89) in the control group. However, there were no changes in BV (Fig. 1a) or changes in TBW (Fig. 1b) in either group. CONCLUSIONS: Increasing fluid intake in individuals with habitually low TWI increases 24-h urine volume and decreases urine osmolality but does not result in changes in TBW or BV. These findings are in agreement with previous work indicating that TWI interventions lasting 3 days [2] to 4 weeks [3] do not result in changes in TBW. Current evidence would suggest that the benefits of increasing TWI are not related changes in TBW.


Asunto(s)
Agua Corporal/metabolismo , Deshidratación/orina , Ingestión de Líquidos/fisiología , Estado de Hidratación del Organismo/fisiología , Agua/administración & dosificación , Adulto , Impedancia Eléctrica , Femenino , Humanos , Masculino , Concentración Osmolar
8.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105841

RESUMEN

It is established that cancer cachexia causes limb muscle atrophy and is strongly associated with morbidity and mortality; less is known about how the development of cachexia impacts the diaphragm. The purpose of this study was to investigate cellular signaling mechanisms related to mitochondrial function, reactive oxygen species (ROS) production, and protein synthesis during the development of cancer cachexia. C57BL/J6 mice developed Lewis Lung Carcinoma for either 0 weeks (Control), 1 week, 2 weeks, 3 weeks, or 4 weeks. At designated time points, diaphragms were harvested and analyzed. Mitochondrial respiratory control ratio was ~50% lower in experimental groups, which was significant by 2 weeks of cancer development, with no difference in mitochondrial content markers COXIV or VDAC. Compared to the controls, ROS was 4-fold elevated in 2-week animals but then was not different at later time points. Only one antioxidant protein, GPX3, was altered by cancer development (~70% lower in experimental groups). Protein synthesis, measured by a fractional synthesis rate, appeared to become progressively lower with the cancer duration, but the mean difference was not significant. The development and progression of cancer cachexia induces marked alterations to mitochondrial function and ROS production in the diaphragm and may contribute to increased cachexia-associated morbidity and mortality.


Asunto(s)
Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Diafragma/fisiopatología , Mitocondrias Musculares/metabolismo , Animales , Antioxidantes/metabolismo , Caquexia/etiología , Carcinoma Pulmonar de Lewis/fisiopatología , Diafragma/metabolismo , Proteína Forkhead Box O3/metabolismo , Glutatión Peroxidasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
9.
Physiol Genomics ; 50(12): 1071-1082, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30289747

RESUMEN

Cancer-cachexia (CC) is a wasting condition directly responsible for 20-40% of cancer-related deaths. The mechanisms controlling development of CC-induced muscle wasting are not fully elucidated. Most investigations focus on the postcachectic state and do not examine progression of the condition. We recently demonstrated mitochondrial degenerations precede muscle wasting in time course progression of CC. However, the extent of muscle perturbations before wasting in CC is unknown. Therefore, we performed global gene expression analysis in CC-induced muscle wasting to enhance understanding of intramuscular perturbations across the development of CC. Lewis lung carcinoma (LLC) was injected into the hind-flank of C57BL6/J mice at 8 wk of age with tumor allowed to develop for 1, 2, 3, or 4 wk and compared with PBS-injected control. Muscle wasting was evident at 4 wk LLC. RNA sequencing of gastrocnemius muscle samples showed widespread alterations in LLC compared with PBS animals with largest differences seen in 4 wk LLC, suggesting extensive transcriptomic alterations concurrent to muscle wasting. Commonly altered pathways included: mitochondrial dysfunction and protein ubiquitination, along with other less studied processes in this condition regulating transcription/translation and cytoskeletal structure. Current findings present novel evidence of transcriptomic shifts and altered cellular pathways in CC-induced muscle wasting.


Asunto(s)
Caquexia/genética , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/genética , Transcriptoma/genética , Animales , Caquexia/patología , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patología , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/patología , Atrofia Muscular/patología
10.
Eur J Appl Physiol ; 118(10): 2249-2258, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30076480

RESUMEN

PURPOSE: Standing workstations have recently been promoted as a healthy alternative to sitting. However, it is unknown how prolonged standing affects arterial stiffness, a prognostic indicator of cardiovascular health. The purpose of this study was twofold: to observe changes in arterial stiffness, as assessed by pulse wave velocity (PWV), with a 2-h bout of standing, and to determine if short, intermittent walking bouts provide a comparative advantage to standing alone. METHODS: Nineteen adults had arterial stiffness assessed by pulse wave velocity. Central (CPWV), upper peripheral (UPWV), and lower peripheral (LPWV) PWV were assessed before (supine), during standing (min 10, 60, and 120), and after (supine) the 2-h standing bout. In one trial, the participants stood at a standing desk immobile for 2 h. In the other trial, participants performed 5-min walking breaks after every 25 min of standing. RESULTS: After 2-h of standing, supine (85.8 ± 90.1 cm/s) and standing (303.4 ± 390.2 cm/s), LPWV increased independent of trial (i.e., main effect of time; p < 0.001). Walking breaks during 2 h of standing did not significantly attenuate these changes. In addition, standing CPWV decreased over time (- 38.5 ± 61.5 cm/s; p = 0.04). Yet, UPWV, standing or supine, did not change over the course of standing (p > 0.05). CONCLUSIONS: These findings indicate that prolonged standing increases the measures of arterial stiffness and there is no evidence that walk breaks attenuate this response.


Asunto(s)
Posición de Pie , Rigidez Vascular , Adulto , Femenino , Humanos , Pierna/irrigación sanguínea , Masculino , Adulto Joven
11.
Physiol Genomics ; 49(5): 253-260, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28341621

RESUMEN

Muscle atrophy is a hallmark of cancer cachexia resulting in impaired function and quality of life and cachexia is the immediate cause of death for 20-40% of cancer patients. Multiple microRNAs (miRNAs) have been identified as being involved in muscle development and atrophy; however, less is known specifically on miRNAs in cancer cachexia. The purpose of this investigation was to examine the miRNA profile of skeletal muscle atrophy induced by cancer cachexia to uncover potential miRNAs involved with this catabolic condition. Phosphate-buffered saline (PBS) or Lewis lung carcinoma cells (LLC) were injected into C57BL/6J mice at 8 wk of age. LLC animals were allowed to develop tumors for 4 wk to induce cachexia. Tibialis anterior muscles were extracted and processed to isolate small RNAs, which were used for miRNA sequencing. Sequencing results were assembled with mature miRNAs, and functions of miRNAs were analyzed by Ingenuity Pathway Analysis. LLC animals developed tumors that contributed to significantly smaller tibialis anterior muscles (18.5%) and muscle cross-sectional area (40%) compared with PBS. We found 371 miRNAs to be present in the muscle above background levels. Of these, nine miRNAs were found to be differentially expressed. Significantly altered groups of miRNAs were categorized into primary functionalities including cancer, cell-to-cell signaling, and cellular development among others. Gene network analysis predicted specific alterations of factors contributing to muscle size including Akt, FOXO3, and others. These results create a foundation for future research into the sufficiency of targeting these genes to attenuate muscle loss in cancer cachexia.


Asunto(s)
Caquexia/genética , MicroARNs/genética , Músculo Esquelético/patología , Atrofia Muscular/genética , Neoplasias Experimentales/genética , Animales , Caquexia/complicaciones , Caquexia/fisiopatología , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Ratones Endogámicos C57BL , Atrofia Muscular/etiología , Atrofia Muscular/patología , Neoplasias Experimentales/complicaciones
12.
Exp Physiol ; 102(9): 1194-1207, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28639297

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the individual and combined effects of muscle-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) overexpression and physical activity during high-fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle-specific PGC-1α overexpression provides no protection against lipid-overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC-1α content, protects against high-fat diet-induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise-induced protection from lipid overload. The prevalence of glucose intolerance is alarmingly high. Efforts to promote mitochondrial biogenesis through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) to mitigate glucose intolerance have been controversial. However, physical activity remains a primary means to alleviate the condition. The aim of this study was to determine the combined effects of muscle-specific overexpression of PGC-1α and physical activity on glucose handling during diet-induced obesity. Wild-type (WT, ∼20) and PGC-1α muscle transgenic (MCK-PGC-1α, ∼20) mice were given a Western diet (WD) at 8 weeks age and allowed to consume food ab libitum throughout the study. At 12 weeks of age, all animals were divided into sedentary (SED) or voluntary wheel running (VWR) interventions. At 7, 11 and 15 weeks of age, animals underwent glucose tolerance tests (GTT) and graded exercise tests (GXT). At 16 weeks of age, tissues were collected. At 11 weeks, the MCK-PGC-1α animals had 50% greater glucose tolerance integrated area under the curve compared with WT. However, at 15 weeks, SED animals also had greater GTT integrated area under the curve compared with VWR, regardless of genotype; furthermore, SED animals demonstrated reduced exercise capacity compared with earlier time points, which was not seen in VWR animals. Voluntary distance run per day was correlated with GTT in VWR-WT, but not VWR-MCK-PGC-1α mice. Voluntary wheel running and genotype independently resulted in a greater LC3II/LC3I ratio, suggesting enhanced autophagosome formation, which was correlated with exercise-induced improvements in GTT. In conclusion, artificially increasing mitochondrial content does not protect from lipid-induced pathologies nor does it augment exercise adaptations. Physical activity ameliorates the effects of lipid overload-induced glucose intolerance, an effect that appears to be related to enhanced activation of autophagy.


Asunto(s)
Autofagia/fisiología , Glucosa/metabolismo , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Actividad Motora/fisiología , Músculo Esquelético/metabolismo
13.
Biol Psychiatry Glob Open Sci ; 4(5): 100332, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38989135

RESUMEN

Background: Proteomics offers potential for detecting and monitoring anorexia nervosa (AN) and its variant, atypical AN (atyp-AN). However, research has been limited by small protein panels, a focus on adult AN, and lack of replication. Methods: In this study, we performed Olink multiplex profiling of 92 inflammation-related proteins in females with AN/atyp-AN (n = 64), all of whom were ≤90% of expected body weight, and age-matched healthy control individuals (n = 44). Results: Five proteins differed significantly between the primary AN/atyp-AN group and the healthy control group (lower levels: HGF, IL-18R1, TRANCE; higher levels: CCL23, LIF-R). The expression levels of 3 proteins (lower IL-18R1, TRANCE; higher LIF-R) were uniquely disrupted in participants with AN in our primary model. No unique expression levels emerged for atyp-AN. In the total sample, 12 proteins (ADA, CD5, CD6, CXCL1, FGF-21, HGF, IL-12B, IL18, IL-18R1, SIRT2, TNFSF14, TRANCE) were positively correlated with body mass index and 5 proteins (CCL11, FGF-19, IL8, LIF-R, OPG) were negatively correlated with body mass index in our primary models. Conclusions: Our results replicate the results of a previous study that demonstrated a dysregulated inflammatory status in AN and extend those results to atyp-AN. Of the 17 proteins correlated with body mass index, 11 were replicated from a previous study that used similar methods, highlighting the promise of inflammatory protein expression levels as biomarkers of AN disease monitoring. Our findings underscore the complexity of AN and atyp-AN by highlighting the inability of the identified proteins to differentiate between these 2 subtypes, thereby emphasizing the heterogeneous nature of these disorders.


We examined 73 inflammation proteins in adolescent girls with anorexia nervosa (AN) and atypical AN and compared them with age-matched healthy control girls. Significant differences were found, driven by 5 key proteins (lower: HGF, IL-18R1, TRANCE; higher: CCL23, LIF-R). Three proteins (TRANCE, LIF-R, IL-18R1) uniquely distinguished low-weight participants with AN from control participants. Our study reveals distinct inflammation patterns in AN and atypical AN and sheds light on potential state-specific factors that underlie these disorders.

14.
J Appl Physiol (1985) ; 134(6): 1438-1449, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37102698

RESUMEN

Gonadal hormones, such as testosterone and estradiol, modulate muscle size and strength in males and females. However, the influence of sex hormones on muscle strength in micro- and partial-gravity environments (e.g., the Moon or Mars) is not fully understood. The purpose of this study was to determine the influence of gonadectomy (castration/ovariectomy) on progression of muscle atrophy in both micro- and partial-gravity environments in male and female rats. Male and female Fischer rats (n = 120) underwent castration/ovariectomy (CAST/OVX) or sham surgery (SHAM) at 11 wk of age. After 2 wk of recovery, rats were exposed to hindlimb unloading (0 g), partial weight bearing at 40% of normal loading (0.4 g, Martian gravity), or normal loading (1.0 g) for 28 days. In males, CAST did not exacerbate body weight loss or other metrics of musculoskeletal health. In females, OVX animals tended to have greater body weight loss and greater gastrocnemius loss. Within 7 days of exposure to either microgravity or partial gravity, females had detectable changes to estrous cycle, with greater time spent in low-estradiol phases diestrus and metestrus (∼47% in 1 g vs. 58% in 0 g and 72% in 0.4 g animals, P = 0.005). We conclude that in males testosterone deficiency at the initiation of unloading has little effect on the trajectory of muscle loss. In females, initial low estradiol status may result in greater musculoskeletal losses.NEW & NOTEWORTHY We find that removal of gonadal hormones does not exacerbate muscle loss in males or females during exposure to either simulated microgravity or partial-gravity environments. However, simulated micro- and partial gravity did affect females' estrous cycles, with more time spent in low-estrogen phases. Our findings provide important data on the influence of gonadal hormones on the trajectory of muscle loss during unloading and will help inform NASA for future crewed missions to space and other planets.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Humanos , Ratas , Masculino , Femenino , Animales , Ovariectomía , Testosterona/fisiología , Estradiol , Músculo Esquelético , Orquiectomía , Hormonas Gonadales , Ratas Endogámicas F344 , Pérdida de Peso
15.
Nutrients ; 15(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37960223

RESUMEN

Cancer cachexia (CC) is a multifactorial wasting syndrome characterized by a significant loss in lean and/or fat mass and represents a leading cause of mortality in cancer patients. Nutraceutical treatments have been proposed as a potential treatment strategy to mitigate cachexia-induced muscle wasting. However, contradictory findings warrant further investigation. The purpose of this study was to determine the effects of leucine supplementation on skeletal muscle in male and female ApcMin/+ mice (APC). APC mice and their wild-type (WT) littermates were given normal drinking water or 1.5% leucine-supplemented water (n = 4-10/group/sex). We measured the gene expression of regulators of inflammation, protein balance, and myogenesis. Leucine treatment lowered survival rates, body mass, and muscle mass in males, while in females, it had no effect on body or muscle mass. Leucine treatment altered inflammatory gene expression by lowering Il1b 87% in the APC group and decreasing Tnfa 92% in both WT and APC males, while it had no effect in females (p < 0.05). Leucine had no effect on regulators of protein balance and myogenesis in either sex. We demonstrated that leucine exacerbates moribundity in males and is not sufficient for mitigating muscle or fat loss during CC in either sex in the ApcMin/+ mouse.


Asunto(s)
Caquexia , Neoplasias Colorrectales , Humanos , Ratones , Masculino , Femenino , Animales , Caquexia/metabolismo , Leucina/farmacología , Leucina/metabolismo , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Suplementos Dietéticos , Morbilidad , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo
16.
Sports Med Health Sci ; 5(4): 319-328, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38314043

RESUMEN

Skeletal muscle size and strength are important for overall health for astronauts. However, how male and female muscle may respond differently to micro- and partial-gravity environments is not fully understood. The purpose of this study was to determine how biological sex and sex steroid hormones influence the progression of muscle atrophy after long term exposure to micro and partial gravity environments in male and female rats. Male and female Fisher rats (n â€‹= â€‹120) underwent either castration/ovariectomy or sham surgeries. After two weeks recovery, animals were divided into microgravity (0g), partial-gravity (40% of weight bearing, 0.4g), or full weight bearing (1g) interventions for 28 days. Measurements of muscle size and strength were evaluated prior to and after interventions. At 0g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle size compared to males; castration/ovariectomy did not influence these differences. Additionally, at 0.4g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle strength compared to males; castration/ovariectomy did not influence these differences. Females have greater musculoskeletal aberrations during exposure to both microgravity and partial-gravity environments; these differences are not dependent on the presence of sex steroid hormones. Correspondingly, additional interventions may be necessary to mitigate musculoskeletal loss in female astronauts to protect occupational and overall health.

17.
J Appl Physiol (1985) ; 135(3): 655-672, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37535708

RESUMEN

Cancer cachexia is clinically defined by involuntary weight loss >5% in <6 mo, primarily affecting skeletal muscle. Here, we aimed to identify sex differences in the onset of colorectal cancer cachexia with specific consideration to skeletal muscle contractile and metabolic functions. Eight-weeks old BALB/c mice (69 males, 59 females) received subcutaneous C26 allografts or PBS vehicle. Tumors were developed for 10-, 15-, 20-, or 25 days. Muscles and organs were collected, in vivo muscle contractility, protein synthesis rate, mitochondrial function, and protein turnover markers were assessed. One-way ANOVA within sex and trend analysis between sexes were performed, P < 0.05. Gastrocnemius and tibialis anterior (TA) muscles became atrophic in male mice at 25 days, whereas female mice exhibited no significant differences in muscle weights at endpoints despite presenting hallmarks of cancer cachexia (fat loss, hepatosplenomegaly). We observed lowered muscle contractility and protein synthesis concomitantly to muscle mass decay in males, with higher proteolytic markers in muscles of both sexes. mRNA of Opa1 was lower in TA, whereas Bnip3 was higher in gastrocnemius after 25 days in male mice, with no significant effect in female mice. Our data suggest relative protections to skeletal muscle in females compared with males despite other canonical signs of cancer cachexia and increased protein degradation markers; suggesting we should place onus upon nonmuscle tissues during early stages of cancer cachexia in females. We noted potential protective mechanisms relating to skeletal muscle contractile and mitochondrial functions. Our findings underline possible heterogeneity in onset of cancer cachexia between biological sexes, suggesting the need for sex-specific approaches to treat cancer cachexia.NEW & NOTEWORTHY Our study demonstrates biological-sex differences in phenotypic characteristics of cancer cachexia between male and female mice, whereby females display many common characteristics of cachexia (gonadal fat loss and hepatosplenomegaly), protein synthesis markers alterations, and common catabolic markers in skeletal muscle despite relatively preserved muscle mass in early-stage cachexia compared with males. Mechanisms of cancer cachexia appear to differ between sexes. Data suggest need to place onus of early cancer cachexia detection and treatment on nonmuscle tissues in females.


Asunto(s)
Caquexia , Neoplasias , Femenino , Masculino , Animales , Ratones , Caquexia/metabolismo , Neoplasias/complicaciones , Neoplasias/patología , Músculo Esquelético/metabolismo , Pérdida de Peso , Mitocondrias/metabolismo , Atrofia Muscular/metabolismo
18.
bioRxiv ; 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37461669

RESUMEN

Proteomics provides an opportunity for detection and monitoring of anorexia nervosa (AN) and its related variant, atypical-AN (atyp-AN). However, research to date has been limited by the small number of proteins explored, exclusive focus on adults with AN, and lack of replication across studies. This study performed Olink Proseek Multiplex profiling of 92 proteins involved in inflammation among females with AN and atyp-AN (N = 64), all < 90% of expected body weight, and age-matched healthy controls (HC; N=44). After correction for multiple testing, nine proteins differed significantly in the AN/atyp-AN group relative to HC group ( lower levels: CXCL1, HGF, IL-18R1, TNFSF14, TRANCE; higher levels: CCL23, Flt3L, LIF-R, MMP-1). The expression levels of three proteins ( lower IL-18R1, TRANCE; higher LIF-R) were uniquely disrupted in females with AN. No unique expression levels emerged for atyp-AN. Across the whole sample, twenty-one proteins correlated positively with BMI (ADA, AXIN1, CD5, CD244, CD40, CD6, CXCL1, FGF-21, HGF, IL-10RB, IL-12B, IL18, IL-18R1, IL6, LAP TGF-beta-1, SIRT2, STAMBP, TNFRSF9, TNFSF14, TRAIL, TRANCE) and six (CCL11, CCL23, FGF-19, IL8, LIF-R, OPG) were negatively correlated with BMI. Overall, our results replicate the prior study demonstrating a dysregulated inflammatory status in AN, and extend these results to atyp-AN (AN/atyp-AN all < 90% of expected body weight). Of the 27 proteins correlated with BMI, 18 were replicated from a prior study using similar methods, highlighting the promise of inflammatory protein expression levels as biomarkers of disease monitoring. Additional studies of individuals across the entire weight spectrum are needed to understand the role of inflammation in atyp-AN.

19.
Sports Med Health Sci ; 4(3): 183-189, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36090917

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has recently become a public health concern concurrent with the obesity crisis. Previous work has shown aberrant mitochondrial content/quality and autophagy in models of NAFLD, whereas exercise is known to improve these derangements. The purpose of this study was to examine the effect of different weight-loss modalities on hepatic mitochondrial content, autophagy and mitophagy in NAFLD. Forty-eight male C57BL/6J mice were divided into 1 of 4 groups: low fat diet (LFD, 10% fat, 18 weeks), high fat diet (HFD, 60% fat diet, 18 weeks), weight-loss by diet (D, 60% fat diet for 10 weeks then 10% fat diet for 8 weeks) or weight-loss by diet and physical activity (D/PA, 60% fat diet for 10 weeks, then 10% fat diet plus a running wheel for 8 weeks). Immunoblot data were analyzed by one-way analysis of variance (ANOVA) with significance denoted at p â€‹< â€‹0.05. COX-IV protein contents were approximately 50% less in HFD compared to LFD. D/PA had 50% more BNIP3 compared to HFD. PINK1 content was 40% higher in D and D/PA compared to LFD. P-PARKIN/PARKIN levels were 40% lower in HFD, D, and D/PA compared to LFD. Whereas p-UbSer65 was 3-fold higher in HFD. LC3II/I ratio was 50% greater in HFD and D/PA, yet p62 protein content was 2.5 fold higher in HFD. High-fat diet causes disruptions in markers of mitochondrial quality control. Physical activity combined with diet were able to ameliorate these derangements and seemingly improve hepatic mitochondrial quality above control values.

20.
Appl Physiol Nutr Metab ; 47(9): 933-948, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35700525

RESUMEN

Cancer cachexia (CC) accounts for 20%-40% of cancer-related deaths. Mitochondrial aberrations have been shown to precede muscle atrophy in different atrophy models, including cancer. Therefore, this study investigated potential protection from the cachectic phenotype through overexpression of peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α). First, to establish potential of mitochondria-based approaches we showed that the mitochondrial antioxidant MitoTEMPO (MitoT) attenuates myotube atrophy induced by Lewis lung carcinoma (LLC) cell conditioned media. Next, cachexia was induced in muscle-specific PGC-1α overexpressing (MCK-PCG1α) or wildtype (WT) littermate mice by LLC implantation. MCK-PCG1α did not protect LLC-induced muscle mass loss. In plantaris, Atrogin mRNA content was 6.2-fold and ∼11-fold greater in WT-LLC vs WT-phosphate-buffered saline (PBS) for males and females, respectively (p < 0.05). MitoTimer red:green ratio for male PGC was ∼65% higher than WT groups (p < 0.05), with ∼3-fold more red puncta in LLC than PBS (p < 0.05). Red:green ratio was ∼56% lower in females WT-LLC vs PGC-LLC (p < 0.05). In females, no change in red puncta was noted across conditions. Lc3 mRNA content was ∼73% and 2-fold higher in male and female LLC mice, respectively, vs PBS (p < 0.05). While MitoT could mitigate cancer-induced atrophy in vitro, PGC-1α overexpression was insufficient to protect muscle mass and mitochondrial health in vivo despite mitigation of cachexia-associated signaling pathways.


Asunto(s)
Carcinoma Pulmonar de Lewis , Enfermedades Musculares , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Animales , Caquexia/etiología , Caquexia/prevención & control , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Femenino , Masculino , Ratones , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Enfermedades Musculares/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA