RESUMEN
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Asunto(s)
COVID-19 , SARS-CoV-2 , Internalización del Virus , Humanos , SARS-CoV-2/genética , COVID-19/virología , COVID-19/genética , Células HEK293 , Sistemas CRISPR-Cas/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Interferones/metabolismo , Interferones/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Antígenos de DiferenciaciónRESUMEN
The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.
Asunto(s)
Antivirales , Descubrimiento de Drogas , Antivirales/farmacología , Antivirales/uso terapéutico , BioensayoRESUMEN
Recent advances in synthetic human embryology has provided a previously inexistent molecular portrait of human development. Models of synthetic human embryonic tissues capitalize on the self-organizing capabilities of human embryonic stem cells when they are cultured on biomimetic conditions that simulate in vivo human development. In this Review, we discuss these models and how they have shed light on the early stages of human development including amniotic sac development, gastrulation and neurulation. We discuss the mechanisms underlying the molecular logic of embryonic tissue self-organization that have been dissected using synthetic models of human embryology and explore future challenges in the field. Geared with technological advances in bioengineering, high resolution gene expression and imaging tools, these models are set to transform our understanding of the mechanistic basis of embryonic tissue self-organization during human development and how they may go awry in disease.
Asunto(s)
Desarrollo Embrionario , Biología Sintética/métodos , Amnios/embriología , Ectodermo/citología , Implantación del Embrión , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Gastrulación , Humanos , NeurulaciónRESUMEN
While studied extensively in model systems, human gastrulation remains obscure. The scarcity of fetal biological material as well as ethical considerations limit our understanding of this process. In vitro attachment of natural blastocysts shed light on aspects of the second week of human development in the absence of the morphological manifestation of gastrulation. Stem cell-derived blastocyst models, blastoids, provide the opportunity to reconstitute pre- to post-implantation development in vitro. Here we show that upon in vitro attachment, human blastoids self-organize a BRA+ population and undergo gastrulation. Single-cell RNA sequencing of these models replicates the transcriptomic signature of the human gastrula. Analysis of developmental timing reveals that in both blastoid models and natural human embryos, the onset of gastrulation as defined by molecular markers, can be traced to timescales equivalent to 12 days post fertilization. In all, natural human embryos and blastoid models self-organize primitive streak and mesoderm derivatives upon in vitro attachment.
Asunto(s)
Gástrula , Gastrulación , Humanos , Desarrollo Embrionario , Blastocisto , MesodermoRESUMEN
Organizing centers secrete morphogens that specify the emergence of germ layers and the establishment of the body's axes during embryogenesis. While traditional experimental embryology tools have been instrumental in dissecting the molecular aspects of organizers in model systems, they are impractical in human in-vitro model systems to dissect the relationships between signaling and fate along embryonic coordinates. To systematically study human embryonic organizer centers, we devised a collection of optogenetic ePiggyBac vectors to express a photoactivatable Cre-loxP recombinase, that allows the systematic induction of organizer structures by shining blue-light on human embryonic stem cells (hESCs). We used a light stimulus to geometrically confine SHH expression in neuralizing hESCs. This led to the self-organization of mediolateral neural patterns. scRNA-seq analysis established that these structures represent the dorsal-ventral forebrain, at the end of the first month of development. Here, we show that morphogen light-stimulation is a scalable tool that induces self-organizing centers.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Células Madre Embrionarias Humanas/fisiología , Prosencéfalo/embriología , Linaje de la Célula/fisiología , Embriología/métodos , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Vectores Genéticos/genética , Humanos , Integrasas/genética , Luz , Optogenética/métodos , Prosencéfalo/metabolismo , RNA-Seq , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación , Análisis de la Célula IndividualRESUMEN
Gastruloids are embryo-like structures that display key features of post-implantation embryonic development, yet whether they fully recapitulate in vivo embryogenesis remains unsolved. Recently in Nature, van den Brink et al. (2020) performed high-resolution gene expression analysis to identify significant similarities between mouse gastruloids and embryos in positional lineage segregation and somite formation.
Asunto(s)
Somitos , Transcriptoma , Animales , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , EmbarazoRESUMEN
The beta (ß)-cell mass formed during embryogenesis is amplified by cell replication during fetal and early postnatal development. Thereafter, ß cells become functionally mature, and their mass is maintained by a low rate of replication. For those few ß cells that replicate in adult life, it is not known how replication is initiated nor whether this occurs in a specialized subset of ß cells. We capitalized on a YAP overexpression system to induce replication of stem-cell-derived ß cells and, by single-cell RNA sequencing, identified an upregulation of the leukemia inhibitory factor (LIF) pathway. Activation of the LIF pathway induces replication of human ß cells in vitro and in vivo. The expression of the LIF receptor is restricted to a subset of transcriptionally distinct human ß cells with increased proliferative capacity. This study delineates novel genetic networks that control the replication of LIF-responsive, replication-competent human ß cells.
Asunto(s)
Linfocitos B/citología , Proliferación Celular , Factor Inhibidor de Leucemia/fisiología , Adulto , Anciano , Animales , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Células Madre Pluripotentes , Factor de Transcripción STAT3/metabolismo , Análisis de la Célula IndividualRESUMEN
Stem cell-derived insulin-producing beta cells (SC-ß) offer an inexhaustible supply of functional ß cells for cell replacement therapies and disease modeling for diabetes. While successful directed differentiation protocols for this cell type have been described, the mechanisms controlling its differentiation and function are not fully understood. Here we report that the Hippo pathway controls the proliferation and specification of pancreatic progenitors into the endocrine lineage. Downregulation of YAP, an effector of the pathway, enhances endocrine progenitor differentiation and the generation of SC-ß cells with improved insulin secretion. A chemical inhibitor of YAP acts as an inducer of endocrine differentiation and reduces the presence of proliferative progenitor cells. Conversely, sustained activation of YAP results in impaired differentiation, blunted glucose-stimulated insulin secretion, and increased proliferation of SC-ß cells. Together these results support a role for YAP in controlling the self-renewal and differentiation balance of pancreatic progenitors and limiting endocrine differentiation in vitro.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Diferenciación Celular/genética , Secreción de Insulina/genética , Células Secretoras de Insulina/citología , Fosfoproteínas/genética , Células Madre Pluripotentes/citología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula , Regulación hacia Abajo , Células HEK293 , Vía de Señalización Hippo , Humanos , Inmunohistoquímica , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Fosfoproteínas/antagonistas & inhibidores , Células Madre Pluripotentes/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAPRESUMEN
One of the main challenges faced by investigators studying the nervous system of members of the phylum Echinodermata is the lack of markers to identify nerve cells and plexi. Previous studies have utilized an antibody, RN1, that labels most of the nervous system structures of the sea cucumber Holothuria glaberrima and other echinoderms. However, the antigen recognized by RN1 remained unknown. In the present work, the antigen has been characterized by immunoprecipitation, tandem mass spectrometry, and cDNA cloning. The RN1 antigen contains a START lipid-binding domain found in Steroidogenic Acute Regulatory (StAR) proteins and other lipid-binding proteins. Phylogenetic tree assembly showed that the START domain is highly conserved among echinoderms. We have named this antigen HgSTARD10 for its high sequence similarity to the vertebrate orthologs. Gene and protein expression analyses revealed an abundance of HgSTARD10 in most H. glaberrima tissues including radial nerve, intestine, muscle, esophagus, mesentery, hemal system, gonads and respiratory tree. Molecular cloning of HgSTARD10, consequent protein expression and polyclonal antibody production revealed the STARD10 ortholog as the antigen recognized by the RN1 antibody. Further characterization into this START domain-containing protein will provide important insights for the biochemistry, physiology and evolution of deuterostomes.