Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chemosphere ; 366: 143447, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362377

RESUMEN

In this study, an iron metal-organic framework (Fe-MOF) was synthesized and immobilized by electrospinning technique with the objective of obtaining a membrane composed of nanofibers of this material (Fe-MOF nanofiber membrane). The characterization performed by XRD, TEM, SEM, EDS mapping and FTIR confirmed the correct synthesis of Fe-MOF as well as its correct retention in the elaborated membranes. The usefulness and effectiveness of the Fe-MOF nanofiber membrane as a catalyst for the electro-Fenton process was evaluated by performing sulfamethoxazole degradation tests. Different parameters such as the effect of intensity (25 and 100 mA), the effect of the drug initial concentration (10-50 mg/L) and the reusability of membranes were studied. Then, the degradation of a drug mixture formed by sulfamethoxazole and antipyrine was evaluated, reaching a degradation of 92.10 % and 87.43 % respectively for each drug in 4 h at 25 mA. In addition, the identification of reactive oxygen species was ascertained by scavenger assays. The study of degradation products was also carried out and their toxicity was predicted by ECOSAR program, concluding that the environmental toxicity would disappear with mineralization. Finally, given the good results obtained in batch tests, the behavior of the process was studied in a system that works continuously, achieving a stable degradation of 83.10 % in the case of treatment with a mixture of drugs. This confirmed the stability of the Fe-MOF nanofiber membrane, as well as, its catalytic activity, making it suitable for long-term treatments.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37853214

RESUMEN

A series of bimetallic of FeCu metal-organic frameworks (MOFs) have been synthesised using a solvothermal process by varying the ratio between the two metals. Further, the bimetallic MOF catalysts were characterised by X-ray powder diffraction, scanning electron microscopy, and infrared spectroscopy techniques. Their catalytic properties for activation of peroxymonosulphate (PMS) have been tested by the removal of a model dye, rhodamine B. As a result, NH2-Fe2.4Cu1-MOF demonstrated the highest degradation, the effect of the ratio NH2-Fe2.4Cu1-MOF/PMS has been studied, and the main reactive species have been assessed. The application of these MOFs in powder form is difficult to handle in successive batch or flow systems. Thus, this study assessed the feasibility of growing NH2-Fe2,4Cu1-MOF on polyacrylonitrile (PAN) spheres using the one-pot solvothermal synthesis method. The optimisation of the catalytic activity of the synthesised composite (NH2-Fe2.4Cu1-MOF@PAN) has been evaluated by response surface methodology using a central composite face-centred experimental design matrix and selecting as independent variables: time, PMS concentration, and catalyst dosage. Based on the results, the optimisation of the operational conditions has been validated. At 2.5 mM PMS, 90 min, and 1.19 g·L-1 of catalyst dosage, maximum degradation (80.92%) has been achieved, which doubles the removal values obtained in previous studies with other MOFs. In addition, under these conditions, the catalyst has been proven to maintain its activity and stability for several cycles without activity loss.

3.
Chemosphere ; 340: 139942, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37634590

RESUMEN

In recent years, heterogeneous electro-Fenton processes have gained considerable attention as an alternative to homogeneous processes. In this context, the aim of this study is the use of a commercial iron metal-organic framework (Fe-MOF), Basolite® F-300, as a base material for the design of a heterogeneous electro-Fenton treatment system for the removal of antipyrine. Initially, the catalyst was applied as powder in aqueous solution and three key parameters of the electro-Fenton process (pH, Fe-MOF concentration and current density) were evaluated and optimized by a Central Composite Design Face Centred (CCD-FC) using antipyrine removal and energy consumption as response functions. Near complete antipyrine removal (94%) was achieved under optimal conditions: pH 3, Fe-MOF 157.78 mg/L and current density 6.67 mA/cm2, obtaining an energy consumption of 0.29 W·h per mg of antipyrine removed. Later, two electrocatalysts (Fe-MOF functionalized cathodes), prepared by different Fe-MOF immobilisation approaches (composite of carbon black/polytetrafluoroethylene or by electrospinning on Ni foam), were synthesized. Their characterisation showed notable Fe-MOF incorporation into the material and favourable properties as electrocatalysts. Both Fe-MOF functionalized cathodes were evaluated in the removal of antipyrine at different pH (acidic and natural) and current density (27.78 and 55.56 mA/cm2), achieving in the best conditions removal levels around 80% in 1 h without any operational problems. In addition, several intermediates generated during the treatment were identified and their toxicity estimated. According to the obtained results, the degradation compounds have less toxicity than the parent compounds, confirming the effectiveness of the treatment.


Asunto(s)
Antipirina , Estructuras Metalorgánicas , Electrodos , Hierro , Polvos
4.
Bioresour Technol ; 363: 127990, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36130686

RESUMEN

The removal of Diethyl hexyl phthalate (DEHP) and Dibutyl phthalate (DBP) is of great importance due to their potential adverse effects on the environment and human health. In this study, two bionanocomposites prepared by immobilization of Bacillus subtilis esterase by crosslinking to halloysite and supported in chitosan and alginate beads were studied and proposed as a green approach. The esterase immobilization was confirmed by physical-chemical characterization. Bionanocomposite using chitosan showed the best degradation levels in batch tests attaining complete degradation of DBP and around 90% of DEHP. To determine the operational stability and efficiency of the system, two fixed bed reactors filled with both bionanocomposites were carried out operating in continuous mode. Chitosan based bionanocomposite showed the best performance being able to completely remove DBP and more than 85% of DEHP at the different flowrates. These results proved the potential of these synthesized bionanocomposites to effectively remove Phthalic Acid Esters.


Asunto(s)
Quitosano , Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Alginatos , Arcilla , Dibutil Ftalato/metabolismo , Esterasas , Ésteres/química , Ácidos Ftálicos/metabolismo
5.
Chemosphere ; 280: 130778, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34162091

RESUMEN

In this study, adsorption of a non-steroidal anti-inflammatory drug such as Diclofenac (DCF) on a commercial carbonaceous aerogel honeycomb monolith (NANOLIT®-NQ40) was ascertained. Based on, the overall design of an adsorption treatment should include a feasible regeneration process for the spent adsorbent. In this work, the adsorption/desorption process was ameliorated by coupling of electrochemical technology (anodic/cathodic polarisation). It was determined that the anodic polarisation enhanced the DCF removal and it was related with the applied voltage and the disposition of the electrodes into the bulk solution. Anodic polarisation at optimal conditions (voltage 0.9 V, electrodes gap 2.5 cm and electrolyte concentration higher than 1 mM) provoked an enhancement (around 30%) in the DCF adsorption rate. The spent aerogel regeneration method for the adsorbed or electro-adsorbed DCF was investigated and cathodic polarisation proved to be a viable regeneration alternative attaining the total regeneration of aerogel. The electro-desorption mechanism seemed to be linked to the generation of repulsive intermolecular forces in the aerogel surface. Finally, the sequential electro-adsorption/electro-desorption process was performed in successive cycles. The results confirmed the feasibility of this strategy, maintaining the efficiency with no structural changes in the monolith after several cycles being the electro-reversible adsorption of pollutants on aerogel a promising technology for the removal of pharmaceuticals from wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Antiinflamatorios no Esteroideos , Diclofenaco
6.
Bioresour Technol ; 320(Pt B): 124399, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33220547

RESUMEN

Hydrothermal carbonization (HTC) is a facile, low-cost and eco-friendly thermal conversion process that has recently gained attention with a growing number of publications (lower 50 in 2000 to over 1500 in 2020). Despite being a promising technology, problems such as operational barriers, complex reaction mechanisms and scaling have to be solved to make it a commercial technology. To bridge this current gap, this review elaborates on the chemistry of the conversion of lignocellulosic biomass. Besides, a comprehensive overview of the influence of the HTC operational conditions (pH, temperature, water:biomass ratio, residence time and water recirculation) are discussed to better understand how hydrochar with desired properties can be efficiently produced. Large-scale examples of the application of HTC are also presented. Current applications of hydrochar in the fields of energy, biocatalysis and environment are reviewed. Finally, economic cost and future prospects are analyzed.


Asunto(s)
Carbono , Biocatálisis , Biomasa , Temperatura
7.
Chemosphere ; 248: 125995, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32035381

RESUMEN

In this study, the performance of three commercial available monolithic carbonaceous aerogels (NQ30A, NQ60A and NQ80A) for the removal of different emerging pollutants, detected in water sources, was evaluated. More specifically, the removal of two pharmaceuticals (antipyrine and sulfamethoxazole) and an anti-fungal agent (methyl paraben), widely used in cosmetics, was studied. The NQ60A demonstrated the best adsorption characteristics and effectively adsorbed over 50 mg/g of the antipyrine and around 30 mg/g sulfamethoxazole and methyl paraben. The kinetic study of the adsorption process revealed that pseudo-first order kinetic model described very well the kinetic behaviour of the selected pollutants onto the NQ60A aerogel. After that, the regeneration of the loaded aerogel, with antipyrine alone and in presence of the other two contaminants, was evaluated. The regeneration was accomplished in two ways: (1) by using directly the loaded aerogels as cathode during the electro-Fenton treatment and (2) by its regeneration immersed in the bulk volume of electro-Fenton cell (boron doped diamond as anode and carbon felt as cathode). Both approaches can provide an effective removal of the pollutants inside the aerogel. In addition, the regenerated aerogel proved to maintain its adsorptive properties and can be successfully reused in successive cycles of adsorption-regeneration. On the basis of these promising results, it can be concluded that the proposed strategy based on aerogels adsorption and electro-Fenton regeneration is a suitable alternative for emerging pollutants removal from water streams.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Boro , Carbono , Diamante , Electrodos , Contaminantes Ambientales , Peróxido de Hidrógeno , Cinética , Oxidación-Reducción
8.
Chemosphere ; 201: 399-416, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29529567

RESUMEN

Over the last decades, advanced oxidation processes have often been used alone, or combined with other techniques, for remediation of ground and surface water pollutants. The application of heterogeneous catalysis to electrochemical advanced oxidation processes is especially useful due to its efficiency and environmental safety. Among those processes, electro-Fenton stands out as the one in which heterogeneous catalysis has been broadly applied. Thus, this review has introduced an up-to-date collation of the current knowledge of the heterogeneous electro-Fenton process, highlighting recent advances in the use of different catalysts such as iron minerals (pyrite, magnetite or goethite), prepared catalysts by the load of metals in inorganic and organic materials, nanoparticles, and the inclusion of catalysts on the cathode. The effects of physical-chemical parameters as well as the mechanisms involved are critically assessed. Finally, although the utilization of this process to remediation of wastewater overwhelmingly outnumber other utilities, several applications have been described in the context of regeneration of adsorbent or the remediation of soils as clear examples of the feasibility of the electro-Fenton process to solve different environmental problems.


Asunto(s)
Técnicas Electroquímicas/métodos , Restauración y Remediación Ambiental/métodos , Catálisis , Técnicas Electroquímicas/tendencias , Restauración y Remediación Ambiental/tendencias , Peróxido de Hidrógeno , Hierro , Oxidación-Reducción , Contaminantes Químicos del Agua/química
9.
Sci Total Environ ; 635: 397-404, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29674263

RESUMEN

In this work, an eco-friendly solution for the remediation of wastewater generated in the lignin recovery process from eco-industrial paper mill has been proposed in their way towards a more circular economy strategy. Thus, the application of the electro-Fenton process for the degradation of the non-recovered lignin and other organic compounds form a scarcely studied acid black liquor waste (ABLW) was successfully performed. This treatment was able to operate in a range of COD loads (0.5-19.5mgO2·L-1) showing high degradation values of the ABLW determined by the abatement of color, total phenolic content and COD. Then, the optimization of the working conditions for the design of a sustainable treatment system with optimum efficiency was carried out using a response surface methodology. The experiment carried out in the calculated optimal conditions for the electro-Fenton degradation process (current intensity 132.5mA, catalyst dosage of 0.10mM, and temperature 40°C) showed a COD removal of 74.82% and current efficiency 77.79%, close to the theoretical value predicted by the model 73.12% and 77.06%, respectively. In addition, the identification of the final products permitted to confirm the mineralization efficiency.


Asunto(s)
Residuos Industriales , Papel , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno , Catálisis , Técnicas Electroquímicas , Peróxido de Hidrógeno , Hierro , Lignina/química , Oxidación-Reducción , Residuos , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua
10.
Chemosphere ; 210: 476-485, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30025365

RESUMEN

The current need for effective regeneration processes to be used in valorization of spent adsorbent demands the research of novel alternative techniques such as application of Advances Oxidation Processes. In this sense, the recent application of electroradical (ER) processes turned out to be very promising in terms of the drugs degradation from different environments. Thus, in this study, harnessing of a low cost natural adsorbent, Tunisian bentonite (BE), was evaluated for the removal of a model drug such as methylthioninium chloride (MC), and then its regeneration by ER processes was demonstrated. Initially, the BE was characterized and the adsorption of the MC was studied. This process followed a pseudo-first order kinetic and Langmuir isotherm fitted well to data reaching uptake values around 145-155 mg g-1. After that, BE regeneration by an ER process such as electro-Fenton process was ascertained. Due to the high buffering capacity of the BE, the addition of citric acid (1 mM) was necessary in order to assure the acidic medium to favor the oxidation reaction. By operating under optimized experimental conditions (current intensity 300 mA, pH 3, Fe2+ (1 mM) and citric acid (1 mM)) near complete adsorbent regeneration was achieved after 300 min of treatment and the pseudo-first-order model fitted well the degradation data. Furthermore, the adsorbent was efficiently used in successive cycles of adsorption-regeneration without operational problems that proved the efficiency of this technology. From the obtained results, a side-by-side configuration was designed and simulated, confirming the viability of the design at large scale.


Asunto(s)
Bentonita/química , Técnicas Electroquímicas/métodos , Azul de Metileno/aislamiento & purificación , Reciclaje/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Tiazinas , Contaminantes Químicos del Agua/análisis
11.
Sci Total Environ ; 622-623: 556-562, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29223079

RESUMEN

The regeneration and reuse of adsorbents is a subject of interest nowadays in order to reduce the pollution and the wastes generated in the adsorption wastewater treatment. In this work, the regeneration of the spent kaolinite by different advanced oxidation processes (Fenton, electro-Fenton and electrokinetic-Fenton) was evaluated. Initially, it was confirmed the ability of a low cost clayey material, kaolinite, for the adsorption of model dye such as Rhodamine B showing Freundlich isotherm fitting. Then, the regeneration and consequent degradation of the pollutant in the adsorbent by Fenton based processes was carried out. The role of different parameters affecting the regeneration process (H2O2:Fe2+ ratio, liquid:solid ratio) were evaluated. Working at 100:1 H2O2:Fe2+ ratio and 30min near complete dye removal (around 97%) from kaolinite was obtained by Fenton treatment. After that, a two-stage treatment for adsorption-regeneration was evaluated during five treatment cycles demonstrating its viability for regeneration of the adsorbent through dye degradation. Based on the successful application of Fenton technique, the improvement of the treatment by electro-Fenton and electrokinetic-Fenton were studied for different solid:liquid ratios achieving satisfactory regeneration values.

12.
Bioresour Technol ; 246: 176-192, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28688738

RESUMEN

Over the past few years, the increasing amount of pollutants and their diversity demand to develop versatile low-cost adsorption systems. The use of biomass feedstock such as agricultural residues, wood chips, manure or municipal solid wastes as source to produce low-cost biosorbent, and the new advances in their synthesis have encouraged remarkable efforts towards the development of biochar "on demand" in which their characteristics can be improved. This new trend opens the potential of biochar application in the removal of pollutants from wastewater, however, its use in environmental management requires the development of full-scale biosorption in engineered systems. Thus, this paper provides a brief review of recent progress in the research and practical application of biochar with a special emphasis on its potential to reduce the pollutants present in wastewater or to render them harmless. Furthermore, research gaps and uncertainties detected in their scale-up in continuous-flow systems are highlighted.


Asunto(s)
Carbón Orgánico , Estiércol , Adsorción , Aguas Residuales
13.
Chemosphere ; 156: 347-356, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27183337

RESUMEN

The feasibility of the electrokinetic-Fenton technology coupled with surfactants in the treatment of real historically hydrocarbons polluted soils has been studied. The characterisation of these soils from Spain and Romania was performed and identified as diesel and diesel-motor oil spillages, respectively. Moreover, the ageing of the spillages produced by the soil contamination was estimated showing the historical pollution of the sites (around 11 and 20 years for Romanian and Spanish soils, respectively). An ex-situ electrochemical treatment was performed to evaluate the adequacy of surfactants for the degradation of the hydrocarbons present in the soils. It was found an enhancement in the solubilisation and removal of TPHs with percentages increasing from 25.7 to 81.8% by the presence of Tween 80 for Spanish soil and from 15.1% to 71.6% for Triton X100 in Romanian soil. Therefore, the viability of coupling enhanced electrokinetic and Fenton remediation was evaluated through a simulated in-situ treatment at laboratory scale. The results demonstrated that the addition of the selected surfactants improved the solubilisation of the hydrocarbons and influenced the electroosmotic flow with a slight decrease. The efficiency of the treatment increased for both considered soil samples and a significant degradation level of the hydrocarbons compounds was observed. Buffering of pH coupled with the addition of a complexing agent showed to be important in the treatment process, facilitating the conditions for the degradation reactions that take place into the soil matrix. The results demonstrated the effectiveness of the selected techniques for remediation of the investigated soils.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Hidrocarburos/química , Contaminantes del Suelo/química , Técnicas Electroquímicas , Cinética , Octoxinol/química , Polisorbatos/química , Rumanía , España , Tensoactivos/química
14.
Bioresour Technol ; 182: 41-49, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25681794

RESUMEN

The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used.


Asunto(s)
Residuos Industriales , Metales Pesados/aislamiento & purificación , Adsorción , Agricultura , Biomasa , Agricultura Forestal , Cinética , Metales Pesados/química , Oryza/química , Hojas de la Planta , Quercus/química
15.
Santafé de Bogotá, D.C; Imprenta Nacional; 1998. 219 p.
Monografía en Español | LILACS | ID: lil-279567

RESUMEN

El propósito de este documento es proponer un debate amplio en las regiones de Colombia sobre cuatro temas que se consideran fundamentales para construír una paz duradera en este país, martirizado por una guerra irregular de más de 36 años que no ha producido otra cosa que muerte, destrucción, atraso, pobreza y una mayor concentración de la riqueza en pocas manos. Los cuatro grandes temas son: 1) Contribuír a conformar una conciencia en torno al cumplimiento del Derecho Internacional Humanitario, de manera que los combatientes dejen de considerar a la población civil objetivo militar, como una primera fase para sembrar en Colombia la cultura del respeto a los Derechos Humanos. 2) Impulsar la participación y el compromiso de las regiones con el proceso de paz, en la perspectiva de desarrollar un reordenamiento territorial como parte de este proceso. 3) Promover el debate sobre la realización de una reforma agraria integral, como instrumento para consolidar la paz en aquellas regiones donde el conflicto armado está asociado a las presiones por la tierra. 4) Construír y fortalecer los mecanismos de participación ciudadana, como instrumentos indispensables para democratizar la vida política y social en los entes territoriales


Asunto(s)
Violencia , Colombia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA