Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ann Bot ; 134(2): 295-310, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38733329

RESUMEN

BACKGROUND AND AIMS: The California Floristic Province (CA-FP) is the most species-rich region of North America north of Mexico. One of several proposed hypotheses explaining the exceptional diversity of the region is that the CA-FP harbours myriad recently diverged lineages with nascent reproductive barriers. Salvia subgenus Audibertia is a conspicuous element of the CA-FP, with multiple sympatric and compatible species. METHODS: Using 305 nuclear loci and both organellar genomes, we reconstruct species trees, examine genomic discordance, conduct divergence-time estimation, and analyse contemporaneous patterns of gene flow and mechanical reproductive isolation. KEY RESULTS: Despite strong genomic discordance, an underlying bifurcating tree is supported. Organellar genomes capture additional introgression events not detected in the nuclear genome. Most interfertility is found within clades, indicating that reproductive barriers arise with increasing genetic divergence. Species are generally not mechanically isolated, suggesting that it is unlikely to be the primary factor leading to reproductive isolation. CONCLUSIONS: Rapid, recent speciation with some interspecific gene flow in conjunction with the onset of a Mediterranean-like climate is the underlying cause of extant diversity in Salvia subgenus Audibertia. Speciation has largely not been facilitated by gene flow. Its signal in the nuclear genome seems to mostly be erased by backcrossing, but organellar genomes each capture different instances of historical gene flow, probably characteristic of many CA-FP lineages. Mechanical reproductive isolation appears to be only part of a mosaic of factors limiting gene flow.


Asunto(s)
Flujo Génico , Especiación Genética , Filogenia , Aislamiento Reproductivo , Salvia , California , Salvia/genética , Biodiversidad , Genoma de Planta , Variación Genética
2.
Mol Ecol ; 32(1): 79-94, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217576

RESUMEN

The perennial herb Western Jacob's Ladder (Polemonium occidentale, Polemoniaceae) is widespread in the mountains of western North America but reappears as a disjunct in the Great Lakes Region in Minnesota and Wisconsin, USA as the narrow endemic P. occidentale subsp. lacustre. This distribution is shown by a diverse assemblage of angiosperms. It has been hypothesized that these species became isolated just after the Last Glacial Maximum, but this has not been tested. Additionally, the genetic diversity and population connectivity of the endemic Great Lakes flora has been understudied, with important conservation implications. Using genotyping-by-sequencing, we examined the relationship of P. occidentale subsp. lacustre to its closest relatives, relationships among all known populations, and genetic diversity within these populations. Polemonium occidentale subsp. lacustre represents an isolated, unique lineage that diverged from its closest relatives 1.3 Ma and arrived in the Great Lakes Region by at least 38 ka. Nearly all extant populations diverged prior to the Last Glacial Maximum, are genetically distinct, and show little within-population genetic diversity. Clonality may mitigate reduction in diversity due to drift. Mixed population signal between Wisconsin and some Minnesota populations may be due to gene flow during the Late Pleistocene. While populations of P. occidentale subsp. lacustre may be relictual from a now extinct western relative, it is best treated as a distinct species. Conservation efforts should focus more on ensuring that current populations remain rather than maintaining large populations sizes across a few populations. However, encouraging habitat heterogeneity may accomplish both simultaneously.


Asunto(s)
Ecosistema , Variación Genética , Filogeografía , Variación Genética/genética , Great Lakes Region , América del Norte , Filogenia
3.
Mol Phylogenet Evol ; 187: 107873, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429334

RESUMEN

Biogeographic disjunctions, including intercontinental disjunctions, are frequent across plant lineages and have been of considerable interest to biologists for centuries. Their study has been reinvigorated by molecular dating and associated comparative methods. One of the "classic" disjunction patterns is that between Eastern Asia and North America. It has been speculated that this pattern is the result of vicariance following the sundering of a widespread Acrto-Teritary flora. Subtribe Nepetinae in the mint family (Lamiaceae) is noteworthy because it contains three genera with this disjunction pattern: Agastache, Dracocephalum, and Meehania. These disjunctions are ostensibly the result of three separate events, allowing for concurrent testing of the tempo, origin, and type of each biogeographic event. Using four plastid and four nuclear markers, we estimated divergence times and analyzed the historical biogeography of Nepetinae, including comprehensive sampling of all major clades for the first time. We recover a well-supported and largely congruent phylogeny of Nepetinae between genomic compartments, although several cases of cyto-nuclear discordance are evident. We demonstrate that the three disjunctions are pseudo-congruent, with unidirectional movement from East Asia at slightly staggered times during the late Miocene and early Pliocene. With the possible exception of Meehania, we find that vicariance is likely the underlying driver of these disjunctions. The biogeographic history of Meehania in North America may be best explained by long-distance dispersal, but a more complete picture awaits deeper sampling of the nuclear genome and more advanced biogeographical models.


Asunto(s)
Lamiaceae , Humanos , Asia Oriental , Pueblos del Este de Asia , Lamiaceae/genética , América del Norte , Filogenia , Filogeografía , Genes de Plantas
4.
Am J Bot ; 110(9): e16220, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37551426

RESUMEN

PREMISE: Floral evolution in large clades is difficult to study not only because of the number of species involved, but also because they often are geographically widespread and include a diversity of outcrossing pollination systems. The cosmopolitan blueberry family (Ericaceae) is one such example, most notably pollinated by bees and multiple clades of nectarivorous birds. METHODS: We combined data on floral traits, pollination ecology, and geography with a comprehensive phylogeny to examine the structuring of floral diversity across pollination systems and continents. We focused on ornithophilous systems to test the hypothesis that some Old World Ericaceae were pollinated by now-extinct hummingbirds. RESULTS: Despite some support for floral differentiation at a continental scale, we found a large amount of variability within and among landmasses, due to both phylogenetic conservatism and parallel evolution. We found support for floral differentiation in anther and corolla traits across pollination systems, including among different ornithophilous systems. Corolla traits show inconclusive evidence that some Old World Ericaceae were pollinated by hummingbirds, while anther traits show stronger evidence. Some major shifts in floral traits are associated with changes in pollination system, but shifts within bee systems are likely also important. CONCLUSIONS: Studying the floral evolution of large, morphologically diverse, and widespread clades is feasible. We demonstrate that continent-specific radiations have led to widespread parallel evolution of floral morphology. We show that traits outside of the perianth may hold important clues to the ecological history of lineages.


Asunto(s)
Ericaceae , Polinización , Animales , Abejas , Filogenia , Flores/anatomía & histología , Fenotipo , Aves
5.
Syst Biol ; 70(1): 162-180, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32617587

RESUMEN

Phylogenomic data from a rapidly increasing number of studies provide new evidence for resolving relationships in recently radiated clades, but they also pose new challenges for inferring evolutionary histories. Most existing methods for reconstructing phylogenetic hypotheses rely solely on algorithms that only consider incomplete lineage sorting (ILS) as a cause of intra- or intergenomic discordance. Here, we utilize a variety of methods, including those to infer phylogenetic networks, to account for both ILS and introgression as a cause for nuclear and cytoplasmic-nuclear discordance using phylogenomic data from the recently radiated flowering plant genus Polemonium (Polemoniaceae), an ecologically diverse genus in Western North America with known and suspected gene flow between species. We find evidence for widespread discordance among nuclear loci that can be explained by both ILS and reticulate evolution in the evolutionary history of Polemonium. Furthermore, the histories of organellar genomes show strong discordance with the inferred species tree from the nuclear genome. Discordance between the nuclear and plastid genome is not completely explained by ILS, and only one case of discordance is explained by detected introgression events. Our results suggest that multiple processes have been involved in the evolutionary history of Polemonium and that the plastid genome does not accurately reflect species relationships. We discuss several potential causes for this cytoplasmic-nuclear discordance, which emerging evidence suggests is more widespread across the Tree of Life than previously thought. [Cyto-nuclear discordance, genomic discordance, phylogenetic networks, plastid capture, Polemoniaceae, Polemonium, reticulations.].


Asunto(s)
Genoma de Plastidios , Magnoliopsida , Flujo Génico , Genoma de Plastidios/genética , Filogenia , Plastidios/genética
6.
Am J Bot ; 107(12): 1677-1692, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315246

RESUMEN

PREMISE: We tested 25 classic and novel hypotheses regarding trait-origin, trait-trait, and trait-environment relationships to account for flora-wide variation in life history, habit, and especially reproductive traits using a plastid DNA phylogeny of most native (96.6%, or 1494/1547 species) and introduced (87.5%, or 690/789 species) angiosperms in Wisconsin, USA. METHODS: We assembled data on life history, habit, flowering, dispersal, mating system, and occurrence across open/closed/mixed habitats across species in the state phylogeny. We used phylogenetically structured analyses to assess the strength and statistical significance of associations predicted by our models. RESULTS: Introduced species are more likely to be annual herbs, occupy open habitats, have large, visually conspicuous, hermaphroditic flowers, and bear passively dispersed seeds. Among native species, hermaphroditism is associated with larger, more conspicuous flowers; monoecy is associated with small, inconspicuous flowers and passive seed dispersal; and dioecy is associated with small, inconspicuous flowers and fleshy fruits. Larger flowers with more conspicuous colors are more common in open habitats, and in understory species flowering under open (spring) canopies; fleshy fruits are more common in closed habitats. Wind pollination may help favor dioecy in open habitats. CONCLUSIONS: These findings support predictions regarding how breeding systems depend on flower size, flower color, and fruit type, and how those traits depend on habitat. This study is the first to combine flora-wide phylogenies with complete trait databases and phylogenetically structured analyses to provide powerful tests of evolutionary hypotheses about reproductive traits and their variation with geographic source, each other, and environmental conditions.


Asunto(s)
Magnoliopsida , Flores , Magnoliopsida/genética , Fitomejoramiento , Polinización , Historia Reproductiva , Wisconsin
7.
Am J Bot ; 106(4): 573-597, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30986330

RESUMEN

PREMISE OF THE STUDY: A key question in evolutionary biology is why some clades are more successful by being widespread geographically, biome diverse, or species-rich. To extend understanding of how shifts in area, biomes, and pollinators impact diversification in plants, we examined the relationships of these shifts to diversification across the mega-genus Salvia. METHODS: A chronogram was developed from a supermatrix of anchored hybrid enrichment genomic data and targeted sequence data for over 500 of the nearly 1000 Salvia species. Ancestral areas and biomes were reconstructed using BioGeoBEARS. Pollinator guilds were scored, ancestral pollinators determined, shifts in pollinator guilds identified, and rates of pollinator switches compared. KEY RESULTS: A well-resolved phylogenetic backbone of Salvia and updated subgeneric designations are presented. Salvia originated in Southwest Asia in the Oligocene and subsequently dispersed worldwide. Biome shifts are frequent from a likely ancestral lineage utilizing broadleaf and/or coniferous forests and/or arid shrublands. None of the four species diversification shifts are correlated to shifts in biomes. Shifts in pollination system are not correlated to species diversification shifts, except for one hummingbird shift that precedes a major shift in diversification near the crown of New World subgen. Calosphace. Multiple reversals back to bee pollination occurred within this hummingbird clade. CONCLUSIONS: Salvia diversified extensively in different continents, biomes, and with both bee and bird pollinators. The lack of tight correlation of area, biome, and most pollinator shifts to the four documented species diversification shifts points to other important drivers of speciation in Salvia.


Asunto(s)
Ecosistema , Especiación Genética , Filogenia , Polinización , Salvia , Animales , Abejas , Aves , Filogeografía
8.
Mol Phylogenet Evol ; 122: 59-79, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29410353

RESUMEN

Inferring interfamilial relationships within the eudicot order Ericales has remained one of the more recalcitrant problems in angiosperm phylogenetics, likely due to a rapid, ancient radiation. As a result, no comprehensive time-calibrated tree or biogeographical analysis of the order has been published. Here, we elucidate phylogenetic relationships within the order and then conduct time-dependent biogeographical and diversification analyses by using a taxon and locus-rich supermatrix approach on one-third of the extant species diversity calibrated with 23 macrofossils and two secondary calibration points. Our results corroborate previous studies and also suggest several new but poorly supported relationships. Newly suggested relationships are: (1) holoparasitic Mitrastemonaceae is sister to Lecythidaceae, (2) the clade formed by Mitrastemonaceae + Lecythidaceae is sister to Ericales excluding balsaminoids, (3) Theaceae is sister to the styracoids + sarracenioids + ericoids, and (4) subfamilial relationships with Ericaceae suggest that Arbutoideae is sister to Monotropoideae and Pyroloideae is sister to all subfamilies excluding Arbutoideae, Enkianthoideae, and Monotropoideae. Our results indicate Ericales began to diversify 110 Mya, within Indo-Malaysia and the Neotropics, with exchange between the two areas and expansion out of Indo-Malaysia becoming an important area in shaping the extant diversity of many families. Rapid cladogenesis occurred along the backbone of the order between 104 and 106 Mya. Jump dispersal is important within the order in the last 30 My, but vicariance is the most important cladogenetic driver of disjunctions at deeper levels of the phylogeny. We detect between 69 and 81 shifts in speciation rate throughout the order, the vast majority of which occurred within the last 30 My. We propose that range shifting may be responsible for older shifts in speciation rate, but more recent shifts may be better explained by morphological innovation.


Asunto(s)
Biodiversidad , Magnoliopsida/clasificación , Filogenia , Animales , Cloroplastos/genética , Asia Oriental , Fósiles/historia , Especiación Genética , Historia Antigua , Magnoliopsida/genética , Mitocondrias/genética , Filogeografía/historia , Ribosomas/genética
9.
Am J Bot ; 103(4): 652-62, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26944353

RESUMEN

PREMISE OF THE STUDY: The alternation of generations life cycle represents a key feature of land-plant evolution and has resulted in a diverse array of sporophyte forms and modifications in all groups of land plants. We test the hypothesis that evolution of sporangium (capsule) shape of the mosses-the second most diverse land-plant lineage-has been driven by differing physiological demands of life in diverse habitats. This study provides an important conceptual framework for analyzing the evolution of a single, homologous character in a continuous framework across a deep expanse of time, across all branches of the tree of life. METHODS: We reconstruct ancestral sporangium shape and ancestral habitat on the largest phylogeny of mosses to date, and use phylogenetic generalized least squares regression to test the association between habitat and sporangium shape. In addition, we examine the association between shifts in sporangium shape and species diversification. RESULTS: We demonstrate that sporangium shape is convergent, under natural selection, and associated with habitat type, and that many shifts in speciation rate are associated with shifts in sporangium shape. CONCLUSIONS: Our results suggest that natural selection in different microhabitats results in the diversity of sporangium shape found in mosses, and that many increasing shifts in speciation rate result in changes in sporangium shape across their 480 million year history. Our framework provides a way to examine if diversification shifts in other land plants are also associated with massive changes in sporophyte form, among other morphological traits.


Asunto(s)
Evolución Biológica , Briófitas/anatomía & histología , Embryophyta/fisiología , Teorema de Bayes , Biodiversidad , Filogenia , Análisis de Componente Principal , Especificidad de la Especie
10.
Evolution ; 77(2): 646-653, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36626811

RESUMEN

We have previously suggested that a shift from bee to hummingbird pollination, in concert with floral architecture modifications, occurred at the crown of Salvia subgenus Calosphace in North America ca. 20 mya (Kriebel et al. 2020 and references therein). Sazatornil et al. (2022), using a hidden states model, challenged these assertions, arguing that bees were the ancestral pollinator of subg. Calosphace and claiming that hummingbirds could not have been the ancestral pollinator of subg. Calosphace because hummingbirds were not contemporaneous with crown subg. Calosphace in North America. Here, using a variety of models, we demonstrate that most analyses support hummingbirds as ancestral pollinators of subg. Calosphace and show that Sazatornil et al. (2022) erroneously concluded that hummingbirds were absent from North America ca. 20 mya. We contend that "biological realism" - based on timing and placement of hummingbirds in Mexico ca. 20 mya and the correlative evolution of hummingbird associated floral traits - must be considered when comparing models based on fit and complexity, including hidden states models.


Asunto(s)
Flores , Salvia , Animales , Abejas , Flores/fisiología , Polinización/fisiología , América del Norte , México
11.
Evolution ; 75(6): 1431-1449, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33818785

RESUMEN

Natural selection by pollinators is an important factor in the morphological diversity and adaptive radiation of flowering plants. Selection by similar pollinators in unrelated plants leads to convergence in floral morphology, or "floral syndromes." Previous investigations into floral syndromes have mostly studied relatively small and/or simple systems, emphasizing vertebrate pollination. Despite the importance of multiple floral traits in plant-pollinator interactions, these studies have examined few quantitative traits, so their co-variation and phenotypic integration have been underexplored. To gain better insights into pollinator-trait dynamics, we investigate the model system of the phlox family (Polemoniaceae), a clade of ∼400 species pollinated by a diversity of vectors. Using a comprehensive phylogeny and large dataset of traits and observations of pollinators, we reconstruct ancestral pollination system, accounting for the temporal history of pollinators. We conduct phylogenetically controlled analyses of trait co-variation and association with pollinators, integrating many analyses over phylogenetic uncertainty. Pollinator shifts are more heterogeneous than previously hypothesized. The evolution of floral traits is partially constrained by phylogenetic history and trait co-variation, but traits are convergent and differences are associated with different pollinators. Trait shifts are usually gradual, rather than rapid, suggesting complex genetic and ecological interactions of flowers at macroevolutionary scales.


Asunto(s)
Evolución Biológica , Ericales/anatomía & histología , Flores/anatomía & histología , Polinización , Selección Genética , Animales , Ericales/genética , Fenotipo , Filogenia
12.
Front Plant Sci ; 12: 767478, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899789

RESUMEN

Next-generation sequencing technologies have facilitated new phylogenomic approaches to help clarify previously intractable relationships while simultaneously highlighting the pervasive nature of incongruence within and among genomes that can complicate definitive taxonomic conclusions. Salvia L., with ∼1,000 species, makes up nearly 15% of the species diversity in the mint family and has attracted great interest from biologists across subdisciplines. Despite the great progress that has been achieved in discerning the placement of Salvia within Lamiaceae and in clarifying its infrageneric relationships through plastid, nuclear ribosomal, and nuclear single-copy genes, the incomplete resolution has left open major questions regarding the phylogenetic relationships among and within the subgenera, as well as to what extent the infrageneric relationships differ across genomes. We expanded a previously published anchored hybrid enrichment dataset of 35 exemplars of Salvia to 179 terminals. We also reconstructed nearly complete plastomes for these samples from off-target reads. We used these data to examine the concordance and discordance among the nuclear loci and between the nuclear and plastid genomes in detail, elucidating both broad-scale and species-level relationships within Salvia. We found that despite the widespread gene tree discordance, nuclear phylogenies reconstructed using concatenated, coalescent, and network-based approaches recover a common backbone topology. Moreover, all subgenera, except for Audibertia, are strongly supported as monophyletic in all analyses. The plastome genealogy is largely resolved and is congruent with the nuclear backbone. However, multiple analyses suggest that incomplete lineage sorting does not fully explain the gene tree discordance. Instead, horizontal gene flow has been important in both the deep and more recent history of Salvia. Our results provide a robust species tree of Salvia across phylogenetic scales and genomes. Future comparative analyses in the genus will need to account for the impacts of hybridization/introgression and incomplete lineage sorting in topology and divergence time estimation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA