RESUMEN
Stem cell-based therapy has been proposed as a novel therapeutic strategy for diabetic nephropathy. This study was designed to evaluate the effect of systemic administration of rat bone marrow-derived c-kit positive (c-kit+) cells on diabetic nephropathy in male rats, focusing on PI3K/AKT/GSK-3ß pathway and apoptosis as a possible therapeutic mechanism. Twenty-eight animals were randomly classified into four groups: Control group (C), diabetic group (D), diabetic group, intravenously received 50 µl phosphate-buffered saline (PBS) containing 3 × 105 c-kit- cells (D + ckit-); and diabetic group, intravenously received 50 µl PBS containing 3 × 105 c-Kit positive cells (D + ckit+). Control and diabetic groups intravenously received 50 µl PBS. C-kit+ cell therapy could reduce renal fibrosis, which was associated with attenuation of inflammation as indicated by decreased TNF-α and IL-6 levels in the kidney tissue. In addition, c-kit+ cells restored the expression levels of PI3K, pAKT, and GSK-3ß proteins. Furthermore, renal apoptosis was decreased following c-kit+ cell therapy, evidenced by the lower apoptotic index in parallel with the increased Bcl-2 and decreased Bax and Caspase-3 levels. Our results showed that in contrast to c-kit- cells, the administration of c-kit+ cells ameliorate diabetic nephropathy and suggested that c-kit+ cells could be an alternative cell source for attenuating diabetic nephropathy.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Nefropatías Diabéticas , Animales , Masculino , Ratas , Apoptosis , Médula Ósea/metabolismo , Nefropatías Diabéticas/terapia , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteínas Proto-Oncogénicas c-kit , Complicaciones de la Diabetes/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodosRESUMEN
The progression and pathogenesis of membranous glomerulonephritis (MGN) are inextricably linked to chronic inflammation. Despite improving clinical remission rates due to the application of cyclophosphamide (CYC), treatment of MGN still requires further exploration. Ruxolitinib (Ruxo) negatively affects the signaling pathways participating in the production of pro-inflammatory cytokines. Hence, we investigated whether the combination of CYC and Ruxo can modulate inflammation through influencing T helper 17 (Th17) lineages and regulatory T cells (Tregs). Passive Heymann nephritis (PHN), an experimental model of MGN, was induced in a population of rats. Then, the animals were divided into five groups: PHN, CYC-receiving, Ruxo-receiving, CYC-Ruxo-receiving PHN rats, and healthy controls. After 28 days of treatment, biochemistry analysis was performed and splenocytes were isolated for flowcytometry investigation of Th17 cells and Tregs. The correlative transcription factors of the cells, alongside their downstream cytokine gene expressions, were also assessed using real-time PCR. Furthermore, serum cytokine signatures for the lymphocytes were determined through ELISA. The combination of CYC and Ruxo significantly reduced the serum values of urea in rats versus the PHN group (24.62 ± 7.970 vs. 40.60 ± 10.81 mg/dL). In contrast to Treg's activities, the functionality of Th17 cells noticeably increased not only in PHN rats but also in CYC or Ruxo-receiving PHN animals when compared with the control (10.60 ± 2.236, 8.800 ± 1.465, 8.680 ± 1.314 vs. 4.420 ± 1.551 %). However, in comparison to the PHN group, the incidence of Th17 cells notably fell in rats receiving CYC and Ruxo (10.60 ± 2.236 vs. 6.000 ± 1.373 %) in favor of the Treg's percentage (5.020 ± 1.761 vs. 8.980 ± 1.178 %), which was verified by the gene expressions and cytokine productions correlative to these lymphocytes. The combination of CYC and Ruxo was able to decline Th17 cells in favor of Tregs improvement in PHN rats, suggesting an innovative combination therapy in MGN treatment approaches.
Asunto(s)
Ciclofosfamida , Citocinas , Glomerulonefritis Membranosa , Nitrilos , Pirazoles , Pirimidinas , Linfocitos T Reguladores , Células Th17 , Animales , Glomerulonefritis Membranosa/tratamiento farmacológico , Glomerulonefritis Membranosa/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Nitrilos/farmacología , Nitrilos/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ratas , Pirazoles/farmacología , Pirazoles/uso terapéutico , Citocinas/metabolismo , Masculino , Modelos Animales de Enfermedad , Quimioterapia CombinadaRESUMEN
BACKGROUND: To investigate the effect of plasma-derived extracellular vesicles (EVs) or conventional medium in fertilization and early embryo development rate in mice. METHODS AND RESULTS: MII oocytes (matured in vivo or in vitro conditions) were obtained from female mice. The extracellular vesicles were isolated by ultracentrifugation of plasma and were analyzed and measured for size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM). By western blotting analysis, the EVs proteins markers such as CD82 protein and heat shock protein 90 (HSP90) were investigated. Incorporating DiI-labeled EVs within the oocyte cytoplasm was visible at 23 h in oocyte cytoplasm. Also, the effective proteins in the early reproductive process were determined in isolated EVs by western blotting. These EVs had a positive effect on the fertilization rate (P < 0.05). The early embryo development (8 cell, morula and blastocyst stages) was higher in groups supplemented with EVs (P < 0.01). CONCLUSION: Our findings showed that supplementing in vitro maturation media with EVs derived- plasma was beneficial for mice's embryo development.
Asunto(s)
Desarrollo Embrionario , Vesículas Extracelulares , Oocitos , Animales , Vesículas Extracelulares/metabolismo , Ratones , Femenino , Oocitos/metabolismo , Oocitos/citología , Fertilización In Vitro/métodos , Blastocisto/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Proteínas HSP90 de Choque Térmico/metabolismoRESUMEN
BACKGROUND: Throughout the three trimesters of a typical pregnancy, we looked at changes in the expression of miRNAs and exhausted T lymphocytes for this study. METHODS AND RESULTS: Fifty healthy subjects were included in this study. The frequency of exhausted T lymphocytes was measured in isolated PBMCs using flow cytometry. PD-1, TIM-3, and related miRNAs gene expression were assessed using qRT-PCR. The analyses revealed a significant decline in PD-1 and Tim-3 expression in PBMCs from RPL women (p = 0.0003 and p = 0.001, respectively). In addition, PD-1 and TIM-3 expression increased significantly in the 2nd trimester compared with the 1st trimester of healthy pregnant women (p < 0.0001 and p = 0.0002, respectively). PD-1 and TIM-3 expression was down-regulated in the 3rd trimester compared with the 1st and 2nd trimesters. In the present study, we demonstrated that TIM-3+/CD4+, TIM-3+/CD8+, PD-1+/CD4+, and PD-1+/CD8 + exhausted T lymphocytes increased in the circulation of women in the 2nd trimester compared to the 1st and 3rd trimester. In the 3rd trimester, the expression of miR-16-5p increased significantly (p < 0.0001). miR-125a-3p expression was down and upregulated in 2nd (p < 0.0001) and 3rd (p = 0.0007) trimesters compared to 1st trimester, respectively. This study showed a significant elevation of miR-15a-5p in 3rd trimester compared to 1st trimester of pregnant women (p = 0.0002). CONCLUSIONS: Expression pattern of PD-1 and TIM3 in exhausted T lymphocytes is different not only between normal pregnant and RPL women but also in different trimesters of pregnancy. So, our results showed the role of these markers in the modulation lymphocytes activity in different stages of pregnancy.
Asunto(s)
MicroARNs , Embarazo , Humanos , Femenino , MicroARNs/genética , Mujeres Embarazadas , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor de Muerte Celular Programada 1 , Primer Trimestre del EmbarazoRESUMEN
Skeletal problems are an increasing issue due to the increase in the global aging population. Different statistics reports show that today, the global population is aging that results in skeletal problems, increased health system costs, and even higher mortality associated with skeletal problems. Common treatments such as surgery and bone grafts are not always effective and in some cases, they can even cause secondary problems such as infections or improper repair. Cell therapy is a method that can be utilized along with common treatments independently. Mesenchymal stem cells (MSCs) are a very important and efficient source in terms of different diseases, especially bone problems. These cells are present in different tissues such as bone marrow, adipose tissue, umbilical cord, placenta, dental pulp, peripheral blood, amniotic fluid and others. Among the types of MSCs, bone marrow mesenchymal stem cells (BMMSCs) are the most widely used source of these cells, which have appeared to be very effective and promising in terms of skeletal diseases, especially compared to the other sources of MSCs. This study focuses on the specific potential and content of BMMSCs from which the specific capacity of these cells originates, and compares their osteogenic potential with other types of MSCs, and also the future directions in the application of BMMSCs as a source for cell therapy.
Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Embarazo , Femenino , Humanos , Huesos , Placenta , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación CelularRESUMEN
During SARS-CoV-2 infection, an effective immune response provides the first line of defense; however, excessive inflammatory innate immunity and impaired adaptive immunity may harm tissues. Soluble immune mediators are involved in the dynamic interaction of ligands with membrane-bound receptors to maintain and restore health after pathological events. In some cases, the dysregulation of their expression can lead to disease pathology. In this literature review, we described current knowledge of the basic features of soluble immune mediators and their dysregulation during SARS-CoV-2 infections and highlighted their contribution to disease severity and mortality. Video Abstract.
Asunto(s)
COVID-19 , Inmunidad Adaptativa , Humanos , Sistema Inmunológico , Inmunidad Innata , SARS-CoV-2RESUMEN
BACKGROUND: The COVID-19 pandemic has become the world's main life-threatening challenge in the third decade of the twenty-first century. Numerous studies have been conducted on SARS-CoV2 virus structure and pathogenesis to find reliable treatments and vaccines. The present study aimed to evaluate the immune-phenotype and IFN-I signaling pathways of COVID-19 patients with mild and severe conditions. MATERIAL AND METHODS: A total of 100 COVID-19 patients (50 with mild and 50 with severe conditions) were enrolled in this study. The frequency of CD4 + T, CD8 + T, Th17, Treg, and B lymphocytes beside NK cells was evaluated using flow cytometry. IFN-I downstream signaling molecules, including JAK-1, TYK-2, STAT-1, and STAT-2, and Interferon regulatory factors (IRF) 3 and 7 expressions at RNA and protein status were investigated using real-time PCR and western blotting techniques, respectively. Immune levels of cytokines (e.g., IL-1ß, IL-6, IL-17, TNF-α, IL-2R, IL-10, IFN-α, and IFN-ß) and the existence of anti-IFN-α autoantibodies were evaluated via enzyme-linked immunosorbent assay (ELISA). RESULTS: Immune-phenotyping results showed a significant decrease in the absolute count of NK cells, CD4 + T, CD8 + T, and B lymphocytes in COVID-19 patients. The frequency of Th17 and Treg cells showed a remarkable increase and decrease, respectively. All signaling molecules of the IFN-I downstream pathway and IRFs (i.e., JAK-1, TYK-2, STAT-1, STAT-2, IRF-3, and IRF-7) showed very reduced expression levels in COVID-19 patients with the severe condition compared to healthy individuals at both RNA and protein levels. Of 50 patients with severe conditions, 14 had anti-IFN-α autoantibodies in sera. Meanwhile, this result was 2 and 0 for patients with mild symptoms and healthy controls, respectively. CONCLUSION: Our results indicate a positive association of the existence of anti-IFN-α autoantibodies and immune cells dysregulation with the severity of illness in COVID-19 patients. However, comprehensive studies are necessary to find out more about this context. Video abstract.
Asunto(s)
COVID-19 , Autoanticuerpos , Citocinas/metabolismo , Humanos , Interferones , Células Asesinas Naturales , Pandemias , ARN Viral , SARS-CoV-2 , Transducción de SeñalRESUMEN
In recent years, stem cells have known as a helpful biological tool for the accurate diagnosis, treatment and recognition of diseases. Using stem cells as biomarkers have presented high potential in the early detection of many diseases. Another advancement in stem cell technology includes stem cell derived organoids model that could be a promising platform for diagnosis and modeling different diseases. Furthermore, therapeutic capabilities of stem cell therapy have increased hope in the face of different disability managements. All of these technologies are also widely used in reproductive related diseases especially in today's world that many couples encounter infertility problems. However, with the aid of numerous improvements in the treatment of infertility, over 80% of couples who dreamed of having children could now have children. Due to the fact that infertility has many negative effects on personal and social lives of young couples, many researchers have focused on the treatment of male and female reproductive system abnormalities with different types of stem cells, including embryonic stem cells, bone marrow mesenchymal stem cells (MSCs), and umbilical cord-derived MSCs. Also, design and formation of reproductive system organoids provide a fascinating window into disease modeling, drug screening, personalized therapy, and regeneration medicine. Utilizing these techniques to study, model and treat the infertility-related diseases has drawn attention of many scientists. This review explains different applications of stem cells in generating reproductive system organoids and stem cell-based therapies for male and female infertility related diseases treatment.
Asunto(s)
Infertilidad Femenina , Organoides , Niño , Células Madre Embrionarias , Femenino , Genitales , Humanos , Infertilidad Femenina/terapia , Masculino , TecnologíaRESUMEN
BACKGROUND: Since the outbreak of the new coronavirus pandemic, the importance of carrying out an infection check to prevent acquisition and transmission among end-stage renal disease patients (ESRD) under maintenance hemodialysis (MHD) has become a major concern in the health care system. Applying serology screening tests could enlighten the view with regards to disease prevalence in dialysis wards. METHODS: We subjected 328 end-stage renal disease patients to maintenance hemodialysis. After dividing patients into suspicious and non-suspicious groups for COVID-19 infection based on their clinical manifestation, they were investigated for SARS-CoV-2 specific IgM and IgG screening against nucleoprotein (NP), spike protein (SP), and receptor-binding domain (RBD), utilizing our recently developed ELISA tests. RESULTS: We found that approximately 10.1% of asymptomatically tested cases were antibody positive. Although IgG positivity showed a higher prevalence than IgM across all three virus antigen subunits, there were no significant differences among mentioned immunoglobulins of the studied groups. The most prevalent antibody was from the IgG subtype against virus nucleoprotein (NP), while the lowest prevalence was attributed to receptor-binding domain (RBD) IgM. CONCLUSION: High seropositive rate among asymptomatic end-stage renal disease patients, as a sample of high-risk population, reflected the importance of considering SARS-CoV-2 specific antibody screening for disease containment.
Asunto(s)
COVID-19 , Fallo Renal Crónico , Anticuerpos Antivirales , COVID-19/epidemiología , Humanos , Inmunoglobulina G , Inmunoglobulina M , Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/terapia , Nucleoproteínas , Prevalencia , Diálisis Renal , SARS-CoV-2RESUMEN
Today, communities and their health systems are facing with several challenges associated with the population ageing. Growing number of bone disorders is one of the most serious consequences of aging. According to the reports bone disorders won't just affect the elderly population. Mesenchymal stem cells (MSCs) are multipotent cells that could be derived from a variety of tissues including bone marrow, Wharton's Jelly, adipose tissue, and others. MSCs have been utilized in different researches in the field of regenerative medicine because of their immunosuppression and anti-inflammatory mechanisms (like: inhibiting the activity of antigen presenting cells, and suppressing the activity of T lymphocyte cells, macrophages, and so on.), migration to injured areas, and participation in healing processes. Bone marrow mesenchymal stem cells (BMMSCs) are a type of these cells which can be commonly used in bone research with the promising results. These cells function by releasing a large number of extracellular vesicles (EVs). Exosomes are the most major EVs products produced by BMMSCs. They have the same contents and properties as their parent cells; however, these structures don't have the defects of cell therapy. Proteins (annexins, tetraspannins, etc.), lipids (cholesterol, phosphoglycerides, etc.), nucleic acids (micro-RNAs, and etc.) and other substances are found in exosomes. Exosomes affect target cells, causing them to change their function. The features of BMMSC exosomes' mechanism in osteogenesis and bone regeneration (like: effects on other MSCs, osteoblasts, osteoclasts, and angiogenesis) and also the effects of their micro-RNAs on osteogenesis are the subject of the present review.
Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Nanopartículas , Humanos , Médula Ósea , Células de la Médula Ósea , Regeneración Ósea , Diferenciación Celular , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , OsteogénesisRESUMEN
INTRODUCTION AND HYPOTHESIS: This review aims to investigate the effect of stem cell (SC) therapy on the management of neurogenic bladder (NGB) in four neurological diseases, including spinal cord injury (SCI), Parkinson's disease (PD), multiple sclerosis (MS), and stroke, in the clinical setting. METHODS: An electronic database search was conducted in the Cochrane Library, EMBASE, Proquest, Clinicaltrial.gov , WHO, Google Scholar, MEDLINE via PubMed, Ovid, Web of Science, Scopus, ongoing trial registers, and conference proceedings in June 2019 and updated by hand searching on 1 February 2021. All randomized controlled trials (RCTs), quasi RCTs, phase I/II clinical trials, case-control, retrospective cohorts, and comprehensive case series that evaluated the regenerative potential of SCs on the management of NGB were included. Cochrane appraisal risk of bias checklist and the standardized critical appraisal instrument from the JBI Meta-Analysis of Statistics, Assessment, and Review Instrument (JBI-MAStARI) were used to appraise the studies. RESULTS: Twenty-six studies among 1282 relevant publications met our inclusion criteria. Only SC therapy was applied for SCI or MS patients. Phase I/II clinical trials (without control arm) were the most conducted studies, and only four were RCTs. Four studies with 153 participants were included in the meta-analysis. The main route of transplantation was via lumbar puncture. There were no serious adverse events. Only nine studies in SCI and one in MS have used urodynamics, and the others have reported improvement based on patient satisfaction. SC therapy did not significantly improve residual urine volume, detrusor pressure, and maximum bladder capacity. Also, the quality of these publications was low or unclear. CONCLUSION: Although most clinical trials provide evidence of the safety and effectiveness of MSCs on the management of NGB, the meta-analysis results did not show a significant improvement; however, the interpretation of study results is difficult because of the lack of placebo controls.
Asunto(s)
Traumatismos de la Médula Espinal , Accidente Cerebrovascular , Vejiga Urinaria Neurogénica , Estudios de Casos y Controles , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Traumatismos de la Médula Espinal/terapia , Vejiga Urinaria Neurogénica/terapiaRESUMEN
Amniotic membrane (AM) is a biological tissue that surrounds the fetus in the mother's womb. It has pluripotent cells, immune modulators, collagen, cytokines with anti-fibrotic and anti-inflammatory effect, matrix proteins, and growth factors. In spite of the biological characteristics, some results have been released in preventing the adhesion on traumatized surfaces. Application of the AM as a scaffold is limited due to its low biomechanical resistance and rapid biodegradation. Therefore, for using the AM during surgery, its modification by different methods such as cross-linking of the membrane collagen is necessary, because the cross-linking is an effective way to reduce the rate of biodegradation of the biological materials. In addition, their cross-linking is likely an efficient way to increase the tensile properties of the material, so that they can be easily handled or sutured. In this regard, various methods related to cross-linking of the AM subsuming the composite materials, physical cross-linking, and chemical cross-linking with the glutraldehyde, carbodiimide, genipin, aluminum sulfate, etc. are reviewed along with its advantages and disadvantages in the current work.
Asunto(s)
Amnios , Carbodiimidas , Amnios/química , Materiales Biocompatibles/química , Carbodiimidas/química , Colágeno/química , Reactivos de Enlaces Cruzados/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
Injury from the severe burn is exacerbated by a persistent inflammatory response. This response is mediated by cytokines and chemokines, which are released from various immune cells, including mast cells. In this study, the ability of the acellular ovine small intestine submucosa (AOSIS) to load and release of Mineral Pitch (MP) was first investigated, and it was found that the preparation of the scaffold by a modified method enables it to load and release water-soluble drugs. Then, 32 male Wistar rats were divided into four groups, a third-degree burn was created, and except for the control group, the others were treated with: AOSIS, WJ-MSCs seeded AOSIS, or AOSIS loaded with WJ-MSCs and MP. Wound sampling on the 5th day after treatment showed that the number of intact and degranulated mast cells in the treatment groups was associated with a decrease compared to the control group. In the last group, this decrease was the largest (and statically significant (p < 0.05)). Also, by measuring the level of inflammatory factors in blood serum, it was found that in the treatment groups compared to the control group, IL-10 was associated with an increase, and TNF-α was associated with a decrease. The changes in inflammatory factors were more significant (p < 0.05) in the last group. So, our results indicate that AOSIS loaded with WJ-MSCs and MP could be used as an innovative tissue-engineered device to control inflammatory condition during burn wound healing.
Asunto(s)
Quemaduras , Trasplante de Células Madre Mesenquimatosas , Animales , Antiinflamatorios , Quemaduras/terapia , Intestino Delgado , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Minerales , Ratas , Ratas Wistar , OvinosRESUMEN
The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.
RESUMEN
In the course of the coronavirus disease 2019 (COVID-19), raising and reducing the function of Th17 and Treg cells, respectively, elicit hyperinflammation and disease progression. The current study aimed to evaluate the responses of Th17 and Treg cells in COVID-19 patients compared with the control group. Forty COVID-19 intensive care unit (ICU) patients were compared with 40 healthy controls. The frequency of cells, gene expression of related factors, as well as the secretion levels of cytokines, were measured by flow cytometry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay techniques, respectively. The findings revealed a significant increase in the number of Th17 cells, the expression levels of related factors (RAR-related orphan receptor gamma [RORγt], IL-17, and IL-23), and the secretion levels of IL-17 and IL-23 cytokines in COVID-19 patients compared with controls. In contrast, patients had a remarkable reduction in the frequency of Treg cells, the expression levels of correlated factors (Forkhead box protein P3 [FoxP3], transforming growth factor-ß [TGF-ß], and IL-10), and cytokine secretion levels (TGF-ß and IL-10). The ratio of Th17/Treg cells, RORγt/FoxP3, and IL-17/IL-10 had a considerable enhancement in patients compared with the controls and also in dead patients compared with the improved cases. The findings showed that enhanced responses of Th17 cells and decreased responses of Treg cells in 2019-n-CoV patients compared with controls had a strong relationship with hyperinflammation, lung damage, and disease pathogenesis. Also, the high ratio of Th17/Treg cells and their associated factors in COVID-19-dead patients compared with improved cases indicates the critical role of inflammation in the mortality of patients.
Asunto(s)
COVID-19/inmunología , Inflamación/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Anciano , Citocinas/inmunología , Femenino , Humanos , Inflamación/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunologíaRESUMEN
In novel coronavirus disease 2019 (COVID-19), the increased frequency and overactivation of T helper (Th) 17 cells and subsequent production of large amounts of proinflammatory cytokines result in hyperinflammation and disease progression. The current study aimed to investigate the therapeutic effects of nanocurcumin on the frequency and responses of Th17 cells in mild and severe COVID-19 patients. In this study, 40 severe COVID-19 intensive care unit-admitted patients and 40 patients in mild condition were included. The frequency of Th17 cells, the messenger RNA expression of Th17 cell-related factors (RAR-related orphan receptor γt, interleukin [IL]-17, IL-21, IL-23, and granulocyte-macrophage colony-stimulating factor), and the serum levels of cytokines were measured in both nanocurcumin and placebo-treated groups before and after treatment. A significant decrease in the number of Th17 cells, downregulation of Th17 cell-related factors, and decreased levels of Th17 cell-related cytokines were found in mild and severe COVID-19 patients treated by nanocurcumin compared to the placebo group. Moreover, the abovementioned parameters were significantly decreased in the nanocurcumin-treated group after treatment versus before treatment. Curcumin could reduce the frequency of Th17 cells and their related inflammatory factors in both mild and severe COVID-19 patients. Hence, it could be considered as a potential modulatory compound in improving the patient's inflammatory condition.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Curcumina/uso terapéutico , Inmunomodulación/efectos de los fármacos , Nanopartículas/uso terapéutico , Células Th17/efectos de los fármacos , Adulto , Citocinas/metabolismo , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Nanopartículas/administración & dosificación , SARS-CoV-2/efectos de los fármacos , Índice de Severidad de la Enfermedad , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/virología , Células Th17/metabolismoRESUMEN
Idiopathic membranous nephropathy (IMN) as a single organ autoimmune disease is a main cause of nephrotic syndrome in adults which is determined through autoantibodies to podocytes proteins. Th17/regulatory T (Treg) balance has emerged as a prominent factor in the regulation of autoimmunity. In this study, we evaluated the balance of Th17 and Treg cells, expression level of related master transcription factors, cytokines and microRNAs in mononuclear cells of peripheral blood of 30 patients with IMN and 30 healthy individuals before treatment. No significant variation was observed in Th17 cell frequency, retinoic acid receptor-related orphan nuclear receptor γt (RORÉ£t), signal transducer and Activator of transcription 3(STAT3), IL-17, and IL-23, while IL-21, IL-4, and IL-10 had significant increase in mRNA expression and protein level of peripheral blood mononuclear cells in IMN cases. Reduction in the percentage of Treg cells was also accompanied with significantly decreased expression of Forkhead box P3(FOXP3) and Transforming growth factor beta(TGF-ß) in IMN patients compared to the control group. Our study revealed that Th17 cells themselves might not be engaged in the pathogenesis of newly diagnosed patients with IMN; however, decreased T reg cells and increased ratio of Th17/Treg lymphocytes might display a role in the pathogenesis of IMN before treatment.
Asunto(s)
Citocinas/sangre , Glomerulonefritis Membranosa/sangre , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo , Adolescente , Adulto , Anciano , Citocinas/inmunología , Femenino , Glomerulonefritis Membranosa/inmunología , Humanos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Linfocitos T Reguladores/inmunología , Células Th17/inmunologíaRESUMEN
Heat stress increases the core body temperature through the pathogenic process. The pathogenic process leads to the release of free radicals, such as superoxide production. Heat stress in the central nervous system (CNS) can cause neuronal damage and symptoms such as delirium, coma, and convulsion. TRPV1 (Transient Receptor Potential Vanilloid1) and TRPV4 genes are members of the TRPV family, including integral membrane proteins that act as calcium-permeable channels. These channels act as thermosensors and have essential roles in the cellular regulation of heat responses. The objective of this study is to examine the effect of general heat stress on the expression of TRPV1 and TRPV4 channels. Furthermore, oxidative markers were measured in the brain of the same heat-stressed mice. Our results show that heat stress leads to a significant upregulation of TRPV1 expression within 21-42 days, while TRPV4 expression decreased significantly in a time-dependent manner. Alterations in the oxidative markers were also observed in the heat-stressed mice.
Asunto(s)
Encéfalo/metabolismo , Hipertermia Inducida , Estrés Oxidativo/fisiología , Canales Catiónicos TRPV/metabolismo , Animales , Encéfalo/patología , Canales de Calcio/metabolismo , Hipertermia Inducida/métodos , Masculino , Ratones Endogámicos C57BLRESUMEN
Multiple sclerosis (MS) is a common degenerative disorder of the central nervous system. The decreased frequency and dysfunction of Treg cells cause inflammation and disease progression. Ozone autohemotherapy can be used as a potential therapeutic approach to regulate the immune system responses and inflammation in MS. For this purpose, 20 relapsing-remitting multiple sclerosis patients were under treatment with ozone twice weekly for 6 months. The frequency of Treg cell, the expression levels of the Treg cell-related factors (FoxP3, IL-10, TGF-ß, miR-17, miR-27, and miR-146A), and the secretion levels of IL-10 and TGF-ß were assessed. We found a significant increase in the number of Treg cells, expression levels of FoxP3, miRNAs (miR-17 and miR-27), IL-10, and TGF-ß factors in patients after oxygen-ozone (O2 -O3 ) therapy compared to before treatment. In contrast, oxygen-ozone therapy notably decreased the expression level of miR-146a in treated patients. Interestingly, the secretion levels of both IL-10 and TGF-ß cytokines were considerably increased in both serum and supernatant of cultured peripheral blood mononuclear cells in posttreatment condition compared to pretreatment condition. According to results, oxygen-ozone therapy raised the frequency of Treg cell and its relevant factors in treated MS patients. Oxygen-ozone therapy would contribute to improving the MS patients by elevating the Treg cell responses.
Asunto(s)
Esclerosis Múltiple/terapia , Oxígeno/farmacología , Ozono/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Adulto , Células Cultivadas , Citocinas/metabolismo , Femenino , Humanos , Inflamación/tratamiento farmacológico , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , Linfocitos T Reguladores/patología , Adulto JovenRESUMEN
Curcumin (CUR) is an ancient therapeutic agent with remarkable antimicrobial and anti-inflammatory properties. The purpose of the current study was to synthesize and evaluate a curcumin-based reparative endodontic material to reduce infection and inflammation besides the induction of mineralization during the healing of the dentin-pulp complex. Poly-É-caprolactone (PCL)/gelatin (Gel)/CUR scaffold was synthesized and assessed by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermo-gravimetric analysis (TGA). Agar diffusion test was performed against E. coli, A. baumannii, P. aeruginosa, S. aureus, E. faecalis, and S. mutans. Moreover, proliferative, antioxidative, anti-inflammatory, and calcification properties of these scaffolds on human dental pulp stem cells (hDPSCs) were evaluated. The results showed that PCL/Gel/CUR scaffold had antibacterial effects. Also, these CUR-based scaffolds had significant inhibitory effects on the expression of tumor necrosis factor α and DCF from inflamed hDPSCs (p < 0.05). Moreover, the induction of mineralization in hDPSCs significantly increased after seeding on CUR-based scaffolds (p < 0.05). Based on these findings, the investigated CUR-loaded material was fabricated successfully and provided an appropriate structure for the attachment and proliferation of hDPSCs. It was found that these scaffolds had antimicrobial, antioxidant, and anti-inflammatory characteristics and could induce mineralization in hDPSCs, which is essential for healing and repairing the injured dentin-pulp complex.