Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Pharmacol Toxicol ; 61: 65-84, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33006916

RESUMEN

The clinical implementation of pharmacogenetic biomarkers continues to grow as new genetic variants associated with drug outcomes are discovered and validated. The number of drug labels that contain pharmacogenetic information also continues to expand. Published, peer-reviewed clinical practice guidelines have also been developed to support the implementation of pharmacogenetic tests. Incorporating pharmacogenetic information into health care benefits patients as well as clinicians by improving drug safety and reducing empiricism in drug selection. Barriers to the implementation of pharmacogenetic testing remain. This review explores current pharmacogenetic implementation initiatives with a focus on the challenges of pharmacogenetic implementation and potential opportunities to overcome these challenges.


Asunto(s)
Farmacogenética , Pruebas de Farmacogenómica , Atención a la Salud , Humanos
2.
Genet Med ; 26(6): 101104, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38411040

RESUMEN

PURPOSE: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.


Asunto(s)
Proteínas Hierro-Azufre , Pez Cebra , Animales , Humanos , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Masculino , Femenino , Fenotipo , Fibroblastos/metabolismo , Fibroblastos/patología , Citosol/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Microcefalia/genética , Microcefalia/patología , Lactante , Metalochaperonas
3.
Mol Ther ; 31(4): 1159-1166, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36793209

RESUMEN

The rapid development of CRISPR genome editing technology has provided the potential to treat genetic diseases effectively and precisely. However, efficient and safe delivery of genome editors to affected tissues remains a challenge. Here, we developed luminescent ABE (LumA), a luciferase reporter mouse model containing the R387X mutation (c.A1159T) in the luciferase gene located in the Rosa26 locus of the mouse genome. This mutation eliminates luciferase activity but can be restored upon A-to-G correction by SpCas9 adenine base editors (ABEs). The LumA mouse model was validated through intravenous injection of two FDA-approved lipid nanoparticle (LNP) formulations consisting of either MC3 or ALC-0315 ionizable cationic lipids, encapsulated with ABE mRNA and LucR387X-specific guide RNA (gRNA). Whole-body bioluminescence live imaging showed consistent restoration of luminescence lasting up to 4 months in treated mice. Compared with mice carrying the wild-type luciferase gene, the ALC-0315 and MC3 LNP groups showed 83.5% ± 17.5% and 8.4% ± 4.3% restoration of luciferase activity in the liver, respectively, as measured by tissue luciferase assays. These results demonstrated successful development of a luciferase reporter mouse model that can be used to evaluate the efficacy and safety of different genome editors, LNP formulations, and tissue-specific delivery systems for optimizing genome editing therapeutics.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratones , Animales , Edición Génica/métodos , Adenina , Modelos Animales de Enfermedad , Luciferasas/genética
4.
Circulation ; 145(4): 279-294, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34874743

RESUMEN

BACKGROUND: Multiple pharmacogenomic studies have identified the synonymous genomic variant rs7853758 (G > A, L461L) and the intronic variant rs885004 in SLC28A3 (solute carrier family 28 member 3) as statistically associated with a lower incidence of anthracycline-induced cardiotoxicity. However, the true causal variant(s), the cardioprotective mechanism of this locus, the role of SLC28A3 and other solute carrier (SLC) transporters in anthracycline-induced cardiotoxicity, and the suitability of SLC transporters as targets for cardioprotective drugs has not been investigated. METHODS: Six well-phenotyped, doxorubicin-treated pediatric patients from the original association study cohort were recruited again, and human induced pluripotent stem cell-derived cardiomyocytes were generated. Patient-specific doxorubicin-induced cardiotoxicity (DIC) was then characterized using assays of cell viability, activated caspase 3/7, and doxorubicin uptake. The role of SLC28A3 in DIC was then queried using overexpression and knockout of SLC28A3 in isogenic human-induced pluripotent stem cell-derived cardiomyocytes using a CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9). Fine-mapping of the SLC28A3 locus was then completed after SLC28A3 resequencing and an extended in silico haplotype and functional analysis. Genome editing of the potential causal variant was done using cytosine base editor. SLC28A3-AS1 overexpression was done using a lentiviral plasmid-based transduction and was validated using stranded RNA-sequencing after ribosomal RNA depletion. Drug screening was done using the Prestwick Chemical Library (n = 1200), followed by in vivo validation in mice. The effect of desipramine on doxorubicin cytotoxicity was also investigated in 8 cancer cell lines. RESULTS: Here, using the most commonly used anthracycline, doxorubicin, we demonstrate that patient-derived cardiomyocytes recapitulate the cardioprotective effect of the SLC28A3 locus and that SLC28A3 expression influences the severity of DIC. Using Nanopore-based fine-mapping and base editing, we identify a novel cardioprotective single nucleotide polymorphism, rs11140490, in the SLC28A3 locus; its effect is exerted via regulation of an antisense long noncoding RNA (SLC28A3-AS1) that overlaps with SLC28A3. Using high-throughput drug screening in patient-derived cardiomyocytes and whole organism validation in mice, we identify the SLC competitive inhibitor desipramine as protective against DIC. CONCLUSIONS: This work demonstrates the power of the human induced pluripotent stem cell model to take a single nucleotide polymorphism from a statistical association through to drug discovery, providing human cell-tested data for clinical trials to attenuate DIC.


Asunto(s)
Cardiotoxicidad/fisiopatología , Doxorrubicina/efectos adversos , Variación Genética/genética , Animales , Modelos Animales de Enfermedad , Genómica , Humanos , Masculino , Ratones
5.
Ther Drug Monit ; 45(3): 337-344, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36728273

RESUMEN

BACKGROUND: Anthracyclines, which are effective chemotherapeutic agents, cause cardiac dysfunction in up to 57% of patients. The cumulative anthracycline dose is a crucial predictor of cardiotoxicity; however, the cumulative dose alone cannot explain all cardiotoxic events. Strongly associated genetic variants in SLC28A3 , UGT1A6 , and RARG contribute to anthracycline-induced cardiotoxicity in pediatric patients and may help identify those most susceptible. This study aimed to examine how these pharmacogenetic effects are modulated by cumulative anthracycline doses in the development of cardiotoxicity. METHODS: A total of 595 anthracycline-treated children were genotyped and cardiotoxicity cases were identified. A dose-stratified analysis was performed to compare the contributions of SLC28A3 rs7853758, UGT1A6 rs17863783, and RARG rs2229774 variants to the development of cardiotoxicity in low-dose (<150 mg/m 2 cumulative dose) and high-dose (>250 mg/m 2 cumulative dose) patient groups. Logistic regression was used to model the relationships between the cumulative anthracycline dose, genetic variants, and cardiotoxicity in the full cohort. RESULTS: At < 150 mg/m 2 cumulative anthracycline dose, the SLC28A3 protective variant did not reach statistical significance [odds ratio (OR) 0.46 (95% confidence interval (CI) 0.10-1.45), P = 0.23], but it was statistically significant at doses >250 mg/m 2 [OR 0.43 (95% CI 0.22-0.78), P = 0.0093]. Conversely, the UGT1A6 and RARG risk variants were either statistically significant or approaching significance at doses <150 mg/m 2 [OR 7.18 (95% CI 1.78-28.4), P = 0.0045 for UGT1A6 and OR 2.76 (95% CI 0.89-7.63), P = 0.057 for RARG ], but not at doses >250 mg/m 2 [OR 2.91 (95% CI 0.80-11.0), P = 0.10; OR 1.56 (95% CI 0.89-2.75), P = 0.12]. CONCLUSIONS: These findings suggest that the SLC28A3 variant imparts more significant protection for patients receiving higher anthracycline doses, whereas the UGT1A6 and RARG risk variants significantly increased the risk of cardiotoxicity at low anthracycline doses.


Asunto(s)
Antraciclinas , Cardiotoxicidad , Humanos , Niño , Antraciclinas/efectos adversos , Cardiotoxicidad/genética , Cardiotoxicidad/tratamiento farmacológico , Antibióticos Antineoplásicos
6.
Ther Drug Monit ; 45(6): 714-730, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37726872

RESUMEN

BACKGROUND: Cisplatin is commonly used to treat solid tumors; however, its use can be complicated by drug-induced hearing loss (ie, ototoxicity). The presence of certain genetic variants has been associated with the development/occurrence of cisplatin-induced ototoxicity, suggesting that genetic factors may be able to predict patients who are more likely to develop ototoxicity. The authors aimed to review genetic associations with cisplatin-induced ototoxicity and discuss their clinical relevance. METHODS: An updated systematic review was conducted on behalf of the Canadian Pharmacogenomics Network for Drug Safety, based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses 2020 statement. Pharmacogenomic studies that reported associations between genetic variation and cisplatin-induced ototoxicity were included. The evidence on genetic associations was summarized and evaluated, and knowledge gaps that can be used to inform future pharmacogenomic studies identified. RESULTS: Overall, 40 evaluated reports, considering 47 independent patient populations, captured associations involving 24 genes. Considering GRADE criteria, genetic variants in 2 genes were strongly (ie, odds ratios ≥3) and consistently (ie, replication in ≥3 independent populations) predictive of cisplatin-induced ototoxicity. Specifically, an ACYP2 variant has been associated with ototoxicity in both children and adults, whereas TPMT variants are relevant in children. Encouraging evidence for associations involving several other genes also exists; however, further research is necessary to determine potential clinical relevance. CONCLUSIONS: Genetic variation in ACYP2 and TPMT may be helpful in predicting patients at the highest risk of developing cisplatin-induced ototoxicity. Further research (including replication studies considering diverse pediatric and adult patient populations) is required to determine whether genetic variation in additional genes may help further identify patients most at risk.


Asunto(s)
Antineoplásicos , Ototoxicidad , Adulto , Humanos , Niño , Cisplatino/efectos adversos , Antineoplásicos/efectos adversos , Farmacogenética , Ototoxicidad/genética , Ototoxicidad/tratamiento farmacológico , Canadá , Acilfosfatasa
7.
Ther Drug Monit ; 45(3): 345-353, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36917731

RESUMEN

BACKGROUND: Cisplatin, widely used in the treatment of solid tumors, causes permanent hearing loss in more than 60% of treated children. Previous studies have implicated several clinical factors in the development of ototoxicity, including cumulative cisplatin dose. However, the role of cisplatin dose intensity in the development of hearing loss in children remains unclear. Pharmacogenetic studies have also identified genetic variants in TPMT that increase the risk of cisplatin-induced hearing loss. This study aims to determine whether cisplatin dose intensity contributes to the risk of hearing loss in children and whether genetic variations in TPMT further modifies the risk of cisplatin-induced hearing loss. METHODS: The authors genotyped 371 cisplatin-treated children for the presence of any 3 TPMT -risk variants. Patients were categorized into high-, moderate-, and low-intensity cisplatin dosing groups according to the cisplatin dose administered per unit time. Kaplan-Meier curves were plotted to compare the cumulative incidence of hearing loss between the genotype and dose intensity groups. RESULTS: Patients receiving cisplatin at high dose intensity experienced significantly higher incidences of ototoxicity than those receiving cisplatin at low dose intensity ( P = 9 × 10 -7 ). Further stratification by TPMT genotype revealed that carriers of ≥1 TPMT variants receiving high-intensity cisplatin developed ototoxicity sooner and more often than their wild-type counterparts (93.8% vs. 56.6% at 12 months; P = 5 × 10 -5 ) and noncarriers receiving low-intensity cisplatin (21.2% at 12 months). CONCLUSIONS: Cisplatin dose intensity is strongly associated with ototoxicity development in children, and this risk is further increased by the presence of TPMT -risk alleles.


Asunto(s)
Antineoplásicos , Pérdida Auditiva , Ototoxicidad , Niño , Humanos , Antineoplásicos/efectos adversos , Catecol O-Metiltransferasa/genética , Cisplatino/efectos adversos , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/epidemiología , Pérdida Auditiva/genética , Metiltransferasas/genética , Ototoxicidad/tratamiento farmacológico
8.
Pediatr Nephrol ; 38(5): 1667-1685, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36260162

RESUMEN

BACKGROUND: Few studies describe acute kidney injury (AKI) burden during paediatric cisplatin therapy and post-cisplatin kidney outcomes. We determined risk factors for and rate of (1) AKI during cisplatin therapy, (2) chronic kidney disease (CKD) and hypertension 2-6 months post-cisplatin, and (3) whether AKI is associated with 2-6-month outcomes. METHODS: This prospective cohort study enrolled children (aged < 18 years at cancer diagnosis) treated with cisplatin from twelve Canadian hospitals. AKI during cisplatin therapy (primary exposure) was defined based on Kidney Disease: Improving Global Outcomes (KDIGO) serum creatinine criteria (≥ stage one). Severe electrolyte abnormalities (secondary exposure) included ≥ grade three hypophosphatemia, hypokalemia, or hypomagnesemia (National Cancer Institute Common Terminology Criteria for Adverse Events v4.0). CKD was albuminuria or decreased kidney function for age (KDIGO guidelines). Hypertension was defined based on the 2017 American Academy of Pediatrics guidelines. RESULTS: Of 159 children (median [interquartile range [IQR]] age: 6 [2-12] years), 73/159 (46%) participants developed AKI and 55/159 (35%) experienced severe electrolyte abnormalities during cisplatin therapy. At median [IQR] 90 [76-110] days post-cisplatin, 53/119 (45%) had CKD and 18/128 (14%) developed hypertension. In multivariable analyses, AKI was not associated with 2-6-month CKD or hypertension. Severe electrolyte abnormalities during cisplatin were associated with having 2-6-month CKD or hypertension (adjusted odds ratio (AdjOR) [95% CI]: 2.65 [1.04-6.74]). Having both AKI and severe electrolyte abnormalities was associated with 2-6-month hypertension (AdjOR [95% CI]: 3.64 [1.05-12.62]). CONCLUSIONS: Severe electrolyte abnormalities were associated with kidney outcomes. Cisplatin dose optimization to reduce toxicity and clear post-cisplatin kidney follow-up guidelines are needed. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Lesión Renal Aguda , Hipertensión , Insuficiencia Renal Crónica , Humanos , Niño , Preescolar , Cisplatino/efectos adversos , Estudios Prospectivos , Estudios Retrospectivos , Canadá , Riñón , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/diagnóstico , Insuficiencia Renal Crónica/complicaciones , Hipertensión/tratamiento farmacológico , Factores de Riesgo , Electrólitos
9.
J Med Genet ; 59(1): 46-55, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257509

RESUMEN

Strabismus is a common condition, affecting 1%-4% of individuals. Isolated strabismus has been studied in families with Mendelian inheritance patterns. Despite the identification of multiple loci via linkage analyses, no specific genes have been identified from these studies. The current study is based on a seven-generation family with isolated strabismus inherited in an autosomal dominant manner. A total of 13 individuals from a common ancestor have been included for linkage analysis. Among these, nine are affected and four are unaffected. A single linkage signal has been identified at an 8.5 Mb region of chromosome 14q12 with a multipoint LOD (logarithm of the odds) score of 4.69. Disruption of this locus is known to cause FOXG1 syndrome (or congenital Rett syndrome; OMIM #613454 and *164874), in which 84% of affected individuals present with strabismus. With the incorporation of next-generation sequencing and in-depth bioinformatic analyses, a 4 bp non-coding deletion was prioritised as the top candidate for the observed strabismus phenotype. The deletion is predicted to disrupt regulation of FOXG1, which encodes a transcription factor of the Forkhead family. Suggestive of an autoregulation effect, the disrupted sequence matches the consensus FOXG1 and Forkhead family transcription factor binding site and has been observed in previous ChIP-seq studies to be bound by Foxg1 in early mouse brain development. Future study of this specific deletion may shed light on the regulation of FOXG1 expression and may enhance our understanding of the mechanisms contributing to strabismus and FOXG1 syndrome.


Asunto(s)
Factores de Transcripción Forkhead/genética , Proteínas del Tejido Nervioso/genética , Síndrome de Rett/genética , Eliminación de Secuencia , Estrabismo/genética , Adolescente , Anciano , Anciano de 80 o más Años , Animales , Ligamiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Linaje , Secuenciación del Exoma , Secuenciación Completa del Genoma , Adulto Joven
10.
Hum Mol Genet ; 29(16): 2788-2802, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32898862

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder that is caused by a CAG repeat expansion in HTT. The length of this repeat, however, only explains a proportion of the variability in age of onset in patients. Genome-wide association studies have identified modifiers that contribute toward a proportion of the observed variance. By incorporating tissue-specific transcriptomic information with these results, additional modifiers can be identified. We performed a transcriptome-wide association study assessing heritable differences in genetically determined expression in diverse tissues, with genome-wide data from over 4000 patients. Functional validation of prioritized genes was undertaken in isogenic HD stem cells and patient brains. Enrichment analyses were performed with biologically relevant gene sets to identify the core pathways. HD-associated gene coexpression modules were assessed for associations with neurological phenotypes in an independent cohort and to guide drug repurposing analyses. Transcriptomic analyses identified genes that were associated with age of HD onset and displayed colocalization with gene expression signals in brain tissue (FAN1, GPR161, PMS2, SUMF2), with supporting evidence from functional experiments. This included genes involved in DNA repair, as well as novel-candidate modifier genes that have been associated with other neurological conditions. Further, cortical coexpression modules were also associated with cognitive decline and HD-related traits in a longitudinal cohort. In summary, the combination of population-scale gene expression information with HD patient genomic data identified novel modifier genes for the disorder. Further, these analyses expanded the pathways potentially involved in modifying HD onset and prioritized candidate therapeutics for future study.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Transcriptoma/genética , Adulto , Edad de Inicio , Anciano , Reparación del ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Femenino , Regulación de la Expresión Génica/genética , Genoma/genética , Genómica , Humanos , Enfermedad de Huntington/epidemiología , Enfermedad de Huntington/patología , Masculino , Persona de Mediana Edad , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Enzimas Multifuncionales/genética , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple/genética , Receptores Acoplados a Proteínas G/genética , Sulfatasas/genética , Expansión de Repetición de Trinucleótido/genética
11.
Cancer ; 128(1): 169-179, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34490624

RESUMEN

BACKGROUND: Ototoxicity is a common adverse event of cisplatin treatment. The authors investigated the development of cisplatin-induced hearing loss (CIHL) over time in children with cancer by age and examined the influence of other clinical characteristics on the course of CIHL. METHODS: Data from Canadian patients with childhood cancer were retrospectively reviewed. Hearing loss was graded according to International Society of Pediatric Oncology criteria. The Kaplan-Meier method was applied to estimate the cumulative incidence of CIHL for the total cohort and according to age. Cox regression models were used to explore the effects of independent variables on CIHL development up to 3 years after the start of therapy. RESULTS: In total, 368 patients with 2052 audiological assessments were included. Three years after initiating therapy, the cumulative incidence of CIHL was highest in patients aged ≤5 years (75%; 95% confidence interval [CI], 66%-84%), with a rapid increase observed to 27% (95% CI, 21%-35%) at 3 months and to 61% (95% CI, 53%-69%) at 1 year, compared with patients aged >5 years (48%; 95% CI, 37%-62%; P < .001). The total cumulative dose of cisplatin at 3 months (per 100 mg/m2 increase: hazard ratio [HR], 1.20; 95% CI, 1.01-1.41) vincristine (HR, 2.87; 95% CI, 1.89-4.36) and the total duration of concomitantly administered antibiotics (>30 days: HR, 1.85; 95% CI, 1.17-2.95) further influenced CIHL development over time. CONCLUSIONS: In young children, the cumulative incidence of CIHL is higher compared with that in older children and develops early during therapy. The course of CIHL is further influenced by the total cumulative dose of cisplatin and other ototoxic (co-)medication. These results highlight the need for audiological monitoring at each cisplatin cycle.


Asunto(s)
Antineoplásicos , Pérdida Auditiva , Adolescente , Antineoplásicos/uso terapéutico , Canadá , Niño , Preescolar , Cisplatino , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/epidemiología , Humanos , Incidencia , Estudios Retrospectivos
12.
Am J Hum Genet ; 104(6): 1116-1126, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31104771

RESUMEN

Huntington disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. Although the length of this repeat is inversely correlated with age of onset (AOO), it does not fully explain the variability in AOO. We assessed the sequence downstream of the CAG repeat in HTT [reference: (CAG)n-CAA-CAG], since variants within this region have been previously described, but no study of AOO has been performed. These analyses identified a variant that results in complete loss of interrupting (LOI) adenine nucleotides in this region [(CAG)n-CAG-CAG]. Analysis of multiple HD pedigrees showed that this LOI variant is associated with dramatically earlier AOO (average of 25 years) despite the same polyglutamine length as in individuals with the interrupting penultimate CAA codon. This LOI allele is particularly frequent in persons with reduced penetrance alleles who manifest with HD and increases the likelihood of presenting clinically with HD with a CAG of 36-39 repeats. Further, we show that the LOI variant is associated with increased somatic repeat instability, highlighting this as a significant driver of this effect. These findings indicate that the number of uninterrupted CAG repeats, which is lengthened by the LOI, is the most significant contributor to AOO of HD and is more significant than polyglutamine length, which is not altered in these individuals. In addition, we identified another variant in this region, where the CAA-CAG sequence is duplicated, which was associated with later AOO. Identification of these cis-acting modifiers have potentially important implications for genetic counselling in HD-affected families.


Asunto(s)
Codón/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Péptidos/genética , Expansión de Repetición de Trinucleótido/genética , Adolescente , Adulto , Edad de Inicio , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje
13.
Am J Hum Genet ; 105(3): 534-548, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31422819

RESUMEN

Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.


Asunto(s)
Alelos , Ácido Aspártico/metabolismo , Encefalopatías/genética , Proteínas de Unión a Ácidos Grasos/genética , Malatos/metabolismo , Mutación , Animales , Niño , Preescolar , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Masculino , Ratones , Secuenciación del Exoma
14.
N Engl J Med ; 380(15): 1433-1441, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30970188

RESUMEN

We report an inborn error of metabolism caused by an expansion of a GCA-repeat tract in the 5' untranslated region of the gene encoding glutaminase (GLS) that was identified through detailed clinical and biochemical phenotyping, combined with whole-genome sequencing. The expansion was observed in three unrelated patients who presented with an early-onset delay in overall development, progressive ataxia, and elevated levels of glutamine. In addition to ataxia, one patient also showed cerebellar atrophy. The expansion was associated with a relative deficiency of GLS messenger RNA transcribed from the expanded allele, which probably resulted from repeat-mediated chromatin changes upstream of the GLS repeat. Our discovery underscores the importance of careful examination of regions of the genome that are typically excluded from or poorly captured by exome sequencing.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Ataxia/genética , Discapacidades del Desarrollo/genética , Glutaminasa/deficiencia , Glutaminasa/genética , Glutamina/metabolismo , Repeticiones de Microsatélite , Mutación , Atrofia/genética , Cerebelo/patología , Preescolar , Femenino , Genotipo , Glutamina/análisis , Humanos , Masculino , Fenotipo , Reacción en Cadena de la Polimerasa , Secuenciación Completa del Genoma
15.
Mol Pharm ; 19(6): 1669-1686, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35594500

RESUMEN

Gene editing mediated by CRISPR/Cas9 systems is due to become a beneficial therapeutic option for treating genetic diseases and some cancers. However, there are challenges in delivering CRISPR components which necessitate sophisticated delivery systems for safe and effective genome editing. Lipid nanoparticles (LNPs) have become an attractive nonviral delivery platform for CRISPR-mediated genome editing due to their low immunogenicity and application flexibility. In this review, we provide a background of CRISPR-mediated gene therapy, as well as LNPs and their applicable characteristics for delivering CRISPR components. We then highlight the challenges of CRISPR delivery, which have driven the significant development of new, safe, and optimized LNP formulations in the past decade. Finally, we discuss considerations for using LNPs to deliver CRISPR and future perspectives on clinical translation of LNP-CRISPR gene editing.


Asunto(s)
Edición Génica , Nanopartículas , Sistemas CRISPR-Cas/genética , Técnicas de Transferencia de Gen , Lípidos , Liposomas
16.
Liver Int ; 42(4): 796-808, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35107877

RESUMEN

BACKGROUND & AIMS: According to pivotal clinical trials, cure rates for sofosbuvir-based antiviral therapy exceed 96%. Treatment failure is usually assumed to be because of virological resistance-associated substitutions or clinical risk factors, yet the role of patient-specific genetic factors has not been well explored. We determined if patient-specific genetic factors help predict patients likely to fail sofosbuvir treatment in real-world treatment situations. METHODS: We recruited sofosbuvir-treated patients with chronic hepatitis C from five Canadian treatment sites, and performed a case-control pharmacogenomics study assessing both previously published and novel genetic polymorphisms. Specifically studied were variants predicted to impair CES1-dependent production of sofosbuvir's active metabolite, interferon-λ signalling variants expected to impact a patient's immune response to the virus and an HLA variant associated with increased spontaneous and treatment-induced viral clearance. RESULTS: Three hundred and fifty-nine sofosbuvir-treated patients were available for analyses after exclusions, with 34 (9.5%) failing treatment. We identified CES1 variants as novel predictors for treatment failure in European patients (rs115629050 or rs4513095; odds ratio (OR): 5.43; 95% confidence interval (CI): 1.64-18.01; P = .0057), replicated associations with IFNL4 variants predicted to increase interferon-λ signalling (eg rs12979860; OR: 2.25; 95% CI: 1.25-4.06; P = .0071) and discovered a novel association with a coding variant predicted to enhance the activity of IFNL4's receptor (rs2834167 in IL10RB; OR: 1.81; 95% CI: 1.01-3.24; P = .047). CONCLUSIONS: Ultimately, this work demonstrates that patient-specific genetic factors could be used as a tool to identify patients at higher risk of treatment failure and allow for these patients to receive effective therapy sooner.


Asunto(s)
Hepatitis C Crónica , Sofosbuvir , Antivirales/efectos adversos , Canadá , Quimioterapia Combinada , Genotipo , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/genética , Humanos , Interleucinas/genética , Ribavirina/farmacología , Ribavirina/uso terapéutico , Insuficiencia del Tratamiento , Resultado del Tratamiento
17.
BMC Womens Health ; 22(1): 48, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197045

RESUMEN

BACKGROUND: The incidence of depression in human females rises steadily throughout adolescence, a critical period of pubertal maturation marked by increasing levels of gonadal hormones including estrogens and progesterone. These gonadal hormones play a central role in social and emotional development and may also contribute to the increased occurrence of depression in females that begins in early adolescence. In this study, we examine whether and how introducing synthetic estrogen and progestin derivatives through the use of combined hormonal contraceptives (CHC), affects adolescent females' risk for developing depression. We further assess potential links between CHC use and alterations in stress responses and social-emotional functioning. METHODS: Using a longitudinal cohort design, we will follow a sample of adolescent females over the span of three years. Participants will be assessed at three time points: once when they are between 13 and 15 years of age, and at approximately 18 and 36 months after their initial assessment. Each time point will consist of two online sessions during which participants will complete a clinical interview that screens for key symptoms of mental health disorders, along with a series of questionnaires assessing their level of depressive symptoms and history of contraceptive use. They will also complete a standardized social-evaluative stress test and an emotion recognition task, as well as provide saliva samples to allow for assessment of their circulating free cortisol levels. DISCUSSION: In this study we will assess the effect of CHC use during adolescence on development of Major Depressive Disorder (MDD). We will control for variables previously found to or proposed to partially account for the observed relationship between CHC use and MDD, including socioeconomic status, age of sexual debut, and CHC-related variables including age of first use, reasons for use, and its duration. In particular, we will discover whether CHC use increases depressive symptoms and/or MDD, whether elevated depressive symptoms and/or MDD predict a higher likelihood of starting CHC, or both. Furthermore, this study will allow us to clarify whether alterations in stress reactivity and social-emotional functioning serve as pathways through which CHC use may result in increased risk of depressive symptoms and/or MDD.


Asunto(s)
Trastorno Depresivo Mayor , Adolescente , Anticonceptivos , Depresión , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/psicología , Femenino , Humanos , Estudios Longitudinales , Estrés Psicológico/psicología
18.
Arch Womens Ment Health ; 25(2): 355-365, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34231053

RESUMEN

Depression during pregnancy affects 10-15% of women, and 5% of women take antidepressants during pregnancy. Clinical guidelines provide recommendations for selective serotonin reuptake inhibitor (SSRI) drug choice and dose based on CYP2D6 and CYP2C19 genotype; however, they are based on evidence from non-pregnant cohorts. This study aimed to test the hypothesis that women with function-altering variants (increased, decreased, or no function) in these pharmacogenes, taking SSRIs prenatally, would have more depression symptoms than women whose pharmacogenetic variants are associated with normal SSRI metabolism. Comprehensive CYP2D6 and CYP2C19 genotyping using a range of methods, including gene copy number analysis, was performed as secondary analyses on two longitudinal cohorts of pregnant women (N = 83) taking the SSRIs paroxetine, citalopram, escitalopram, or sertraline. The Kruskal-Wallis test compared mean depression scores across four predicted metabolizer groups: poor (n = 5), intermediate (n = 10), normal (n = 53), and ultrarapid (n = 15). There were no significant differences between mean depression scores across the four metabolizer groups (H(3) = .73, p = .87, eta-squared = .029, epsilon-squared = .0089). This is the first study of the relationship in pregnancy between CYP2C19 pharmacogenetic variations and depression symptoms in the context of SSRI use. Findings from this initial study do not support the clinical use of pharmacogenetic testing for SSRI use during the second or third trimesters of pregnancy, but these findings should be confirmed in larger cohorts. There is an urgent need for further research to clarify the utility of pharmacogenetic testing for pregnant women, especially as companies offering direct-to-consumer genetic testing expand their marketing efforts.


Asunto(s)
Citocromo P-450 CYP2D6 , Inhibidores Selectivos de la Recaptación de Serotonina , Estudios Transversales , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Depresión/diagnóstico , Depresión/tratamiento farmacológico , Femenino , Humanos , Embarazo , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos
19.
Neurogenetics ; 22(4): 251-262, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34213677

RESUMEN

Monoamine neurotransmitter disorders present predominantly with neurologic features, including dystonic or dyskinetic cerebral palsy and movement disorders. Genetic conditions that lead to secondary defects in the synthesis, catabolism, transport, and metabolism of biogenic amines can lead to neurotransmitter abnormalities, which can present with similar features. Eleven patients with secondary neurotransmitter abnormalities were enrolled between 2011 and 2015. All patients underwent research-based whole exome and/or whole genome sequencing (WES/WGS). A trial of treatment with levodopa/carbidopa and 5-hydroxytryptophan was initiated. In six families with abnormal neurotransmitter profiles and neurological phenotypes, variants in known disease-causing genes (KCNJ6, SCN2A, CSTB in 2 siblings, NRNX1, KIF1A and PAK3) were identified, while one patient had a variant of uncertain significance in a candidate gene (DLG4) that may explain her phenotype. In 3 patients, no compelling candidate genes were identified. A trial of neurotransmitter replacement therapy led to improvement in motor and behavioral symptoms in all but two patients. The patient with KCNJ6 variant did not respond to L-dopa therapy, but rather experienced increased dyskinetic movements even at low dose of medication. The patient's symptoms harboring the NRNX1 deletion remained unaltered. This study demonstrates the utility of genome-wide sequencing in further understanding the etiology and pathophysiology of neurometabolic conditions, and the potential of secondary neurotransmitter deficiencies to serve as novel therapeutic targets. As there was a largely favorable response to therapy in our case series, a careful trial of neurotransmitter replacement therapy should be considered in patients with cerebrospinal fluid (CSF) monoamines below reference range.


Asunto(s)
Aminas Biogénicas/metabolismo , Levodopa/genética , Neurotransmisores/líquido cefalorraquídeo , Quinasas p21 Activadas/deficiencia , Adolescente , Adulto , Carbidopa/metabolismo , Niño , Preescolar , Combinación de Medicamentos , Femenino , Humanos , Cinesinas/metabolismo , Levodopa/metabolismo , Levodopa/uso terapéutico , Masculino , Adulto Joven , Quinasas p21 Activadas/metabolismo
20.
Curr Opin Pediatr ; 32(5): 646-653, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32796162

RESUMEN

PURPOSE OF REVIEW: Adverse drug reactions (ADRs) are a serious burden and can negatively impact patient quality of life. One of these ADRs, anthracycline-induced cardiotoxicity (ACT), occurs in up to 65% of treated patients and can lead to congestive heart failure. Pharmacogenetic studies have helped to reveal the mechanisms of ACT and, consequently, inform current strategies to prevent ACT in the clinic. RECENT FINDINGS: Many pharmacogenetic studies have been conducted for ACT, but few have led to the development of clinical practice guidelines and clinical genetic testing for ACT. This is, in part, because of lack of replication in independent patient cohorts and/or validation of an affected biological pathway. Recent advances in pharmacogenetic studies have been made through the use of novel methods that directly implicate dysregulated genes and perturbed biological pathways in response to anthracycline treatment. SUMMARY: Furthering the understanding of the genetics and altered biological pathways of ACT through these novel methods can inform clinical treatment strategies and enable refinement of current clinical practice guidelines. This can therefore lead to improvement in clinical pharmacogenetic testing for further reduction of the incidence of ACT in pediatric cancer patients taking anthracyclines.


Asunto(s)
Antraciclinas , Cardiotoxicidad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Preparaciones Farmacéuticas , Farmacogenética , Antraciclinas/efectos adversos , Cardiotoxinas , Niño , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA