Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(1): 97-110, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34368842

RESUMEN

Fanconi anemia (FA) is a rare human genetic disorder characterized by bone marrow failure, predisposition to cancer and developmental defects including hypogonadism. Reproductive defects leading to germ cell aplasia are the most consistent phenotypes seen in FA mouse models. We examined the role of the nuclear FA core complex gene Fancg in the development of primordial germ cells (PGCs), the embryonic precursors of adult gametes, during fetal development. PGC maintenance was severely impaired in Fancg-/- embryos. We observed a defect in the number of PGCs starting at E9.5 and a strong attrition at E11.5 and E13.5. Remarkably, we observed a mosaic pattern reflecting a portion of testicular cords devoid of PGCs in E13.5 fetal gonads. Our in vitro and in vivo data highlight a potential role of Fancg in the proliferation and in the intrinsic cell motility abilities of PGCs. The random migratory process is abnormally activated in Fancg-/- PGCs, altering the migration of cells. Increased cell death and PGC attrition observed in E11.5 Fancg-/- embryos are features consistent with delayed migration of PGCs along the migratory pathway to the genital ridges. Moreover, we show that an inhibitor of RAC1 mitigates the abnormal migratory pattern observed in Fancg-/- PGCs.


Asunto(s)
Anemia de Fanconi , Animales , Movimiento Celular/genética , Anemia de Fanconi/genética , Proteína del Grupo de Complementación G de la Anemia de Fanconi/metabolismo , Células Germinativas/metabolismo , Gónadas/metabolismo , Ratones , Transducción de Señal
2.
Mol Cell ; 57(1): 123-37, 2015 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-25533188

RESUMEN

The SLX4 Fanconi anemia protein is a tumor suppressor that may act as a key regulator that engages the cell into specific genome maintenance pathways. Here, we show that the SLX4 complex is a SUMO E3 ligase that SUMOylates SLX4 itself and the XPF subunit of the DNA repair/recombination XPF-ERCC1 endonuclease. This SLX4-dependent activity is mediated by a remarkably specific interaction between SLX4 and the SUMO-charged E2 conjugating enzyme UBC9 and relies not only on newly identified SUMO-interacting motifs (SIMs) in SLX4 but also on its BTB domain. In contrast to its ubiquitin-binding UBZ4 motifs, SLX4 SIMs are dispensable for its DNA interstrand crosslink repair functions. Instead, while detrimental in response to global replication stress, the SUMO E3 ligase activity of the SLX4 complex is critical to prevent mitotic catastrophe following common fragile site expression.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Genoma , Subunidades de Proteína/metabolismo , Recombinasas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Replicación del ADN , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Inestabilidad Genómica , Humanos , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinasas/genética , Alineación de Secuencia , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética
3.
EMBO Rep ; 21(2): e48222, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31867888

RESUMEN

SMC5/6 function in genome integrity remains elusive. Here, we show that SMC5 dysfunction in avian DT40 B cells causes mitotic delay and hypersensitivity toward DNA intra- and inter-strand crosslinkers (ICLs), with smc5 mutants being epistatic to FANCC and FANCM mutations affecting the Fanconi anemia (FA) pathway. Mutations in the checkpoint clamp loader RAD17 and the DNA helicase DDX11, acting in an FA-like pathway, do not aggravate the damage sensitivity caused by SMC5 dysfunction in DT40 cells. SMC5/6 knockdown in HeLa cells causes MMC sensitivity, increases nuclear bridges, micronuclei, and mitotic catastrophes in a manner similar and non-additive to FANCD2 knockdown. In both DT40 and HeLa systems, SMC5/6 deficiency does not affect FANCD2 ubiquitylation and, unlike FANCD2 depletion, RAD51 focus formation. SMC5/6 components further physically interact with FANCD2-I in human cells. Altogether, our data suggest that SMC5/6 functions jointly with the FA pathway to support genome integrity and DNA repair and may be implicated in FA or FA-related human disorders.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Anemia de Fanconi , ARN Helicasas DEAD-box , Daño del ADN/genética , ADN Helicasas/genética , Reparación del ADN/genética , Anemia de Fanconi/genética , Inestabilidad Genómica , Células HeLa , Humanos
4.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232633

RESUMEN

DNA replication is a tightly regulated fundamental process allowing the correct duplication and transfer of the genetic information from the parental cell to the progeny. It involves the coordinated assembly of several proteins and protein complexes resulting in replication fork licensing, firing and progression. However, the DNA replication pathway is strewn with hurdles that affect replication fork progression during S phase. As a result, cells have adapted several mechanisms ensuring replication completion before entry into mitosis and segregating chromosomes with minimal, if any, abnormalities. In this review, we describe the possible obstacles that a replication fork might encounter and how the cell manages to protect DNA replication from S to the next G1.


Asunto(s)
Replicación del ADN , Reparación del ADN , Mitosis/genética , Fase S
5.
Genes Chromosomes Cancer ; 58(5): 305-316, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30387289

RESUMEN

Some regions of the genome, notably common fragile sites (CFSs), are hypersensitive to replication stress and often involved in the generation of gross chromosome rearrangements in cancer cells. CFSs nest within very large genes and display cell-type-dependent instability. Fragile or not, large genes tend to replicate late in S-phase. A number of data now show that transcription perturbs replication completion across the body of large genes, particularly upon replication stress. However, the molecular mechanisms by which transcription elicits such under-replication and subsequent instability remain unclear. We present here our view of the mechanisms responsible for CFS under-replication and those allowing the cells to cope with this problem in G2 and mitosis. We notably focus on the major role played by the FANC proteins in the protection of CFSs from S phase up to late mitosis. We finally discuss a possible rationale for the conservation of large genes across vertebrate evolution.


Asunto(s)
Sitios Frágiles del Cromosoma , Fase S/genética , Telofase/genética , Animales , Evolución Molecular , Humanos
6.
Nucleic Acids Res ; 44(2): 648-56, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26446986

RESUMEN

To rescue collapsed replication forks cells utilize homologous recombination (HR)-mediated mechanisms to avoid the induction of gross chromosomal abnormalities that would be generated by non-homologous end joining (NHEJ). Using DNA interstrand crosslinks as a replication barrier, we investigated how the Fanconi anemia (FA) pathway promotes HR at stalled replication forks. FA pathway inactivation results in Fanconi anemia, which is associated with a predisposition to cancer. FANCD2 monoubiquitination and assembly in subnuclear foci appear to be involved in TIP60 relocalization to the chromatin to acetylates histone H4K16 and prevents the binding of 53BP1 to its docking site, H4K20Me2. Thus, FA pathway loss-of-function results in accumulation of 53BP1, RIF1 and RAP80 at damaged chromatin, which impair DNA resection at stalled replication fork-associated DNA breaks and impede HR. Consequently, DNA repair in FA cells proceeds through the NHEJ pathway, which is likely responsible for the accumulation of chromosome abnormalities. We demonstrate that the inhibition of NHEJ or deacetylase activity rescue HR in FA cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Cromatina/metabolismo , Anemia de Fanconi/metabolismo , Histona Acetiltransferasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Acetilación , Proteínas Portadoras/genética , Cromatina/efectos de los fármacos , Cromatina/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Anemia de Fanconi/tratamiento farmacológico , Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Histona Acetiltransferasas/genética , Chaperonas de Histonas , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina Acetiltransferasa 5 , Proteína Homóloga de MRE11 , Mitomicina/farmacología , Proteínas Nucleares/genética , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitinación
7.
Genet Mol Biol ; 40(2): 398-407, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28558075

RESUMEN

Among the chromosome fragility-associated human syndromes that present cancer predisposition, Fanconi anemia (FA) is unique due to its large genetic heterogeneity. To date, mutations in 21 genes have been associated with an FA or an FA-like clinical and cellular phenotype, whose hallmarks are bone marrow failure, predisposition to acute myeloid leukemia and a cellular and chromosomal hypersensitivity to DNA crosslinking agents exposure. The goal of this review is to trace the history of the identification of FA genes, a history that started in the eighties and is not yet over, as indicated by the cloning of a twenty-first FA gene in 2016.

8.
J Cell Sci ; 127(Pt 16): 3546-54, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25015289

RESUMEN

The aim of this study was to identify novel substrates of the FANCcore complex, the inactivation of which leads to the genetic disorder Fanconi anemia, which is associated with bone marrow failure, developmental abnormalities and a predisposition to cancer. Eight FANC proteins participate in the nuclear FANCcore complex, which functions as an E3 ubiquitin-ligase that monoubiquitylates FANCD2 and FANCI in response to replicative stress. Here, we use mass spectrometry to compare proteins from FANCcore-complex-deficient cells to those of rescued control cells after treatment with hydroxyurea, an inducer of FANCD2 monoubiquitylation. FANCD2 and FANCI appear to be the only targets of the FANCcore complex. We identify other proteins that are post-translationally modified in a FANCA- or FANCC-dependent manner. The majority of these potential targets localize to the cell membrane. Finally, we demonstrate that (a) the chemokine receptor CXCR5 is neddylated; (b) FANCA but not FANCC appears to modulate CXCR5 neddylation through an unknown mechanism; (c) CXCR5 neddylation is involved in targeting the receptor to the cell membrane; and (d) CXCR5 neddylation stimulates cell migration and motility. Our work has uncovered a pathway involving FANCA in neddylation and cell motility.


Asunto(s)
Membrana Celular/metabolismo , Movimiento Celular , Receptores CXCR5/metabolismo , Membrana Celular/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación C de la Anemia de Fanconi/metabolismo , Humanos , Proteína NEDD8 , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteómica , Receptores CXCR5/genética , Ubiquitinas/metabolismo
9.
Blood ; 124(24): 3613-23, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25261197

RESUMEN

Fanconi anemia (FA) is an inherited chromosomal instability syndrome that is characterized by progressive bone marrow failure. One of the main causes of morbidity and mortality in FA is a bleeding tendency, resulting from low platelet counts. Platelets are the final products of megakaryocyte (MK) maturation. Here, we describe a previously unappreciated role of Fanconi anemia group A protein (Fanca) during the endomitotic process of MK differentiation. Fanca deficiency leads to the accumulation of MKs with low nuclear ploidy and to decreased platelet production. We show, for the first time, that Fanca(-/-) mice are characterized by limited number and proliferative capacity of MK progenitors. Defective megakaryopoiesis of Fanca(-/-) cells is associated with the formation of nucleoplasmic bridges and increased chromosomal instability, indicating that inaccurate endoreplication and karyokinesis occur during MK polyploidization. Sustained DNA damage forces Fanca(-/-) MKs to enter a senescence-like state. Furthermore, inhibition of the Rho-associated kinase, a regulator of cytokinesis, improves the polyploidization of Fanca(-/-) MKs but greatly increases their genomic instability and diminishes their differentiation potential, supporting the notion that accumulation of DNA damage through endomitotic cycles affects MK maturation. Our study indicates that Fanca expression during endomitosis is crucial for normal megakaryopoiesis and platelet production.


Asunto(s)
Proteína del Grupo de Complementación A de la Anemia de Fanconi , Regulación de la Expresión Génica/genética , Megacariocitos/metabolismo , Trombocitopenia , Trombopoyesis/genética , Animales , Senescencia Celular/genética , Inestabilidad Cromosómica/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/biosíntesis , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Megacariocitos/patología , Ratones , Ratones Noqueados , Mitosis , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patología
11.
Artículo en Inglés | MEDLINE | ID: mdl-38801411

RESUMEN

Second malignant neoplasm (SMN) is one of the most severe long-term risks for childhood cancer survivors (CCS), significantly impacting long-term patient survival. While radiotherapy and chemotherapy are known risk factors, the observed inter-individual variability suggests a genetic component contributing to the risk of SMN. This article aims to conduct a systematic review of genetic factors implicated in the SMN risk among CCS. Searches were performed in PubMed, Scopus, and Web of Sciences. Eighteen studies were included (eleven candidate gene studies, three genome-wide association studies, and four whole exome/genome sequencing studies). The included studies were based on different types of first cancers, investigated any or specific types of SMN, and focused mainly on genes involved in drug metabolism and DNA repair pathways. These differences in study design and methods used to characterize genetic variants limit the scope of the results and highlight the need for further extensive and standardized investigations. However, this review provides a valuable compilation of SMN risk-associated variants and genes, facilitating efficient replication and advancing our understanding of the genetic basis for this major risk for CCS.

12.
Hum Mol Genet ; 20(11): 2171-81, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21389083

RESUMEN

The maintenance of genetic stability depends on the fine-tuned initiation and termination of pathways involved in cell cycle checkpoints and DNA repair. Here, we describe a new pathway that regulates checkpoint kinase 1 (CHK1) activity, a key element controlling both checkpoints and DNA repair. We show that the ubiquitin-specific peptidase 1 (USP1) deubiquitinase participates in the maintenance of both total and phosphorylated levels of CHK1 in response to genotoxic stress. We establish that USP1 depletion stimulates the damage-specific DNA-binding protein 1-dependent degradation of phosphorylated CHK1 in both a monoubiquitinylated Fanconi anaemia, complementation group D2 (FANCD2)-dependent and -independent manner. Our data support the existence of a circuit in which CHK1 activates checkpoints, DNA repair and proliferating cell nuclear antigen and FANCD2 monoubiquitinylation. The latter two events, in turn, switch off activated CHK1 by negative feedback inhibition, which contributes to the downregulation of the DNA damage response. This pathway, which is compromised in the cancer-prone disease Fanconi anaemia (FA), likely contributes to the hypersensitivity of cells from FA patients to DNA damage and to the clinical phenotype of the syndrome; it may also represent a pharmacological target to improve patient care and develop new cancer therapies.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Arabidopsis , Ciclo Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Reparación del ADN , Regulación hacia Abajo , Endopeptidasas/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Células HEK293 , Células HeLa , Humanos , Fenotipo , Fosforilación , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Interferente Pequeño , Transducción de Señal , Transfección , Proteasas Ubiquitina-Específicas
13.
J Immunol ; 187(8): 4031-9, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21911602

RESUMEN

Hypoxia is a major feature of the solid tumor microenvironment and is known to be associated with tumor progression and poor clinical outcome. Recently, we reported that hypoxia protects human non-small cell lung tumor cells from specific lysis by stabilizing hypoxia-inducible factor-1α and inducing STAT3 phosphorylation. In this study, we show that NANOG, a transcription factor associated with stem cell self renewal, is a new mediator of hypoxia-induced resistance to specific lysis. Our data indicate that under hypoxic conditions, NANOG is induced at both transcriptional and translational levels. Knockdown of the NANOG gene in hypoxic tumor cells is able to significantly attenuate hypoxia-induced tumor resistance to CTL-dependent killing. Such knockdown correlates with an increase of target cell death and an inhibition of hypoxia-induced delay of DNA replication in these cells. Interestingly, NANOG depletion results in inhibition of STAT3 phosphorylation and nuclear translocation. To our knowledge, this study is the first to show that hypoxia-induced NANOG plays a critical role in tumor cell response to hypoxia and promotes tumor cell resistance to Ag-specific lysis.


Asunto(s)
Hipoxia de la Célula/inmunología , Proteínas de Homeodominio/biosíntesis , Neoplasias/inmunología , Linfocitos T Citotóxicos/inmunología , Western Blotting , Hipoxia de la Célula/genética , Línea Celular Tumoral , Separación Celular , Citometría de Flujo , Expresión Génica , Regulación de la Expresión Génica/inmunología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Humanos , Microscopía Confocal , Proteína Homeótica Nanog , Neoplasias/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T Citotóxicos/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
14.
Nucleic Acids Res ; 39(13): 5459-73, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21421559

RESUMEN

Deciphering the crosstalk between a host cell and a virus during infection is important not only to better define viral biology but also to improve our understanding of cellular processes. We identified the FANC pathway as a helper of viral replication and recombination by searching for cellular targets that are modified by adenovirus (Ad) infection and are involved in its outcome. This pathway, which is involved in the DNA damage response and checkpoint control, is altered in Fanconi anaemia, a rare cancer predisposition syndrome. We show here that Ad5 infection activates the FANC pathway independent of the classical DNA damage response. Infection with a non-replicating Ad shows that the presence of viral DNA is not sufficient to induce the monoubiquitination of FANCD2 but still activates the DNA damage response coordinated by phospho-NBS1 and phospho-CHK1. E1A expression alone fails to induce FANCD2 monoubiquitination, indicating that a productive viral infection and/or replication is required for FANC pathway activation. Our data indicate that Ad5 infection induces FANCD2 activation to promote its own replication. Specifically, we show that FANCD2 is involved in the recombination process that accompanies viral DNA replication. This study provides evidence of a DNA damage-independent function of the FANC pathway and identifies a cellular system involved in Ad5 recombination.


Asunto(s)
Adenoviridae/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Recombinación Genética , Replicación Viral , Adenoviridae/fisiología , Proteínas E1A de Adenovirus/metabolismo , Línea Celular , Células Cultivadas , Daño del ADN , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Humanos , Cinética , Ubiquitinación
15.
Cell Biosci ; 13(1): 115, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355617

RESUMEN

BACKGROUND: Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) niche, which includes bone-forming and bone-resorbing cells, i.e., osteoblasts (OBs) and osteoclasts (OCs). OBs originate from mesenchymal progenitors, while OCs are derived from HSCs. Self-renewal, proliferation and differentiation of HSCs are under the control of regulatory signals generated by OBs and OCs within the BM niche. Consequently, OBs and OCs control both bone physiology and hematopoiesis. Since the human developmental and bone marrow failure genetic syndrome fanconi anemia (FA) presents with skeletal abnormalities, osteoporosis and HSC impairment, we wanted to test the hypothesis that the main pathological abnormalities of FA could be related to a defect in OC physiology and/or in bone homeostasis. RESULTS: We revealed here that the intrinsic differentiation of OCs from a Fanca-/- mouse is impaired in vitro due to overactivation of the p53-p21 axis and defects in NF-kB signaling. The OC differentiation abnormalities observed in vitro were rescued by treating Fanca-/- cells with the p53 inhibitor pifithrin-α, by treatment with the proinflammatory cytokine TNFα or by coculturing them with Fanca-proficient or Fanca-deficient osteoblastic cells. CONCLUSIONS: Overall, our results highlight an unappreciated role of Fanca in OC differentiation that is potentially circumvented in vivo by the presence of OBs and TNFα in the BM niche.

16.
Oncogene ; 42(37): 2764-2775, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37573408

RESUMEN

Leukaemia is caused by the clonal evolution of a cell that accumulates mutations/genomic rearrangements, allowing unrestrained cell growth. However, recent identification of leukaemic mutations in the blood cells of healthy individuals revealed that additional events are required to expand the mutated clones for overt leukaemia. Here, we assessed the functional consequences of deleting the Fanconi anaemia A (Fanca) gene, which encodes a DNA damage response protein, in Spi1 transgenic mice that develop preleukaemic syndrome. FANCA loss increases SPI1-associated disease penetrance and leukaemic progression without increasing the global mutation load of leukaemic clones. However, a high frequency of leukaemic FANCA-depleted cells display heterozygous activating mutations in known oncogenes, such as Kit or Nras, also identified but at low frequency in FANCA-WT mice with preleukaemic syndrome, indicating that FANCA counteracts the emergence of oncogene mutated leukaemic cells. A unique transcriptional signature is associated with the leukaemic status of FANCA-depleted cells, leading to activation of MDM4, NOTCH and Wnt/ß-catenin pathways. We show that NOTCH signalling improves the proliferation capacity of FANCA-deficient leukaemic cells. Collectively, our observations indicate that loss of the FANC pathway, known to control genetic instability, fosters the expansion of leukaemic cells carrying oncogenic mutations rather than mutation formation. FANCA loss may contribute to this leukaemogenic progression by reprogramming transcriptomic landscape of the cells.


Asunto(s)
Proteína del Grupo de Complementación A de la Anemia de Fanconi , Leucemia , Animales , Ratones , Heterocigoto , Leucemia/genética , Mutación , Oncogenes/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética
17.
Blood Rev ; 52: 100904, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34750031

RESUMEN

Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.


Asunto(s)
Anemia de Fanconi , Aberraciones Cromosómicas , Reparación del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Inestabilidad Genómica , Humanos , Ribosomas/metabolismo
18.
Cell Stem Cell ; 28(1): 8-9, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417873

RESUMEN

Fanconi anemia (FA) is an inherited syndrome of bone marrow failure (BMF) due to disrupted DNA repair. In this issue of Cell Stem Cell, Rodríguez et al. (2021) show that blood stem cells from FA patients have abnormal and inflammation-induced MYC expression, which promotes their proliferation in the face of increasing DNA damage.


Asunto(s)
Anemia de Fanconi , Células de la Médula Ósea , Daño del ADN , Reparación del ADN , Anemia de Fanconi/genética , Humanos
19.
Cell Biosci ; 11(1): 18, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441180

RESUMEN

Haematopoiesis, the process by which a restrained population of stem cells terminally differentiates into specific types of blood cells, depends on the tightly regulated temporospatial activity of several transcription factors (TFs). The deregulation of their activity or expression is a main cause of pathological haematopoiesis, leading to bone marrow failure (BMF), anaemia and leukaemia. TFs can be induced and/or activated by different stimuli, to which they respond by regulating the expression of genes and gene networks. Most TFs are highly pleiotropic; i.e., they are capable of influencing two or more apparently unrelated phenotypic traits, and the action of a single TF in a specific setting often depends on its interaction with other TFs and signalling pathway components. The microphthalmia-associated TF (MiTF) is a prototype TF in multiple situations. MiTF has been described extensively as a key regulator of melanocyte and melanoma development because it acts mainly as an oncogene. Mitf-mutated mice show a plethora of pleiotropic phenotypes, such as microphthalmia, deafness, abnormal pigmentation, retinal degeneration, reduced mast cell numbers and osteopetrosis, revealing a greater requirement for MiTF activity in cells and tissue. A growing amount of evidence has led to the delineation of key roles for MiTF in haematopoiesis and/or in cells of haematopoietic origin, including haematopoietic stem cells, mast cells, NK cells, basophiles, B cells and osteoclasts. This review summarizes several roles of MiTF in cells of the haematopoietic system and how MiTFs can impact BM development.

20.
Cell Death Differ ; 28(4): 1159-1173, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33723374

RESUMEN

Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status. Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and chromosome fragility syndrome but also as a "senescence syndrome".


Asunto(s)
Senescencia Celular/genética , Inestabilidad Cromosómica , Reparación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Animales , Roturas del ADN de Doble Cadena , Replicación del ADN , Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA