Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 480(1): 1-23, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36607281

RESUMEN

RAS proteins regulate most aspects of cellular physiology. They are mutated in 30% of human cancers and 4% of developmental disorders termed Rasopathies. They cycle between active GTP-bound and inactive GDP-bound states. When active, they can interact with a wide range of effectors that control fundamental biochemical and biological processes. Emerging evidence suggests that RAS proteins are not simple on/off switches but sophisticated information processing devices that compute cell fate decisions by integrating external and internal cues. A critical component of this compute function is the dynamic regulation of RAS activation and downstream signaling that allows RAS to produce a rich and nuanced spectrum of biological outputs. We discuss recent findings how the dynamics of RAS and its downstream signaling is regulated. Starting from the structural and biochemical properties of wild-type and mutant RAS proteins and their activation cycle, we examine higher molecular assemblies, effector interactions and downstream signaling outputs, all under the aspect of dynamic regulation. We also consider how computational and mathematical modeling approaches contribute to analyze and understand the pleiotropic functions of RAS in health and disease.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Proteínas ras/química , Guanosina Trifosfato/metabolismo
2.
J Am Chem Soc ; 145(37): 20302-20310, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37682266

RESUMEN

Ras GTPases play a crucial role in cell signaling pathways. Mutations of the Ras gene occur in about one third of cancerous cell lines and are often associated with detrimental clinical prognosis. Hot spot residues Gly12, Gly13, and Gln61 cover 97% of oncogenic mutations, which impair the enzymatic activity in Ras. Using QM/MM free energy calculations, we present a two-step mechanism for the GTP hydrolysis catalyzed by the wild-type Ras.GAP complex. We found that the deprotonation of the catalytic water takes place via the Gln61 as a transient Brønsted base. We also determined the reaction profiles for key oncogenic Ras mutants G12D and G12C using QM/MM minimizations, matching the experimentally observed loss of catalytic activity, thereby validating our reaction mechanism. Using the optimized reaction paths, we devised a fast and accurate procedure to design GAP mutants that activate G12D Ras. We replaced GAP residues near the active site and determined the activation barrier for 190 single mutants. We furthermore built a machine learning for ultrafast screening, by fast prediction of the barrier heights, tested both on the single and double mutations. This work demonstrates that fast and accurate screening can be accomplished via QM/MM reaction path optimizations to design protein sequences with increased catalytic activity. Several GAP mutations are predicted to re-enable catalysis in oncogenic G12D, offering a promising avenue to overcome aberrant Ras-driven signal transduction by activating enzymatic activity instead of inhibition. The outlined computational screening protocol is readily applicable for designing ligands and cofactors analogously.


Asunto(s)
Genes ras , Proteínas ras , Proteínas ras/genética , Secuencia de Aminoácidos , Catálisis , Hidrólisis
3.
Small ; 19(48): e2302531, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37605460

RESUMEN

Sensing of neurotransmitters (NTs) down to nm concentrations is demonstrated by utilizing self-assembled monolayers of plasmonic 60 nm Au nanoparticles in close-packed arrays immobilized onto glass substrates. Multiplicative surface-enhanced Raman spectroscopy enhancements are achieved by integrating Fe(III) sensitizers into the precisely-defined <1 nm nanogaps, to target dopamine (DA) sensing. The transparent glass substrates allow for efficient access from both sides of the monolayer aggregate films by fluid and light, allowing repeated sensing in different analytes. Repeated reusability after analyte sensing is shown through oxygen plasma cleaning protocols, which restore pristine conditions for the nanogaps. Examining binding competition in multiplexed sensing of two catecholamine NTs, DA and epinephrine, reveals their bidentate binding and their interactions. These systems are promising for widespread microfluidic integration enabling a wide range of continuous biofluid monitoring for applications in precision health.

4.
J Chem Phys ; 158(10): 104112, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36922127

RESUMEN

Efficiently identifying the most important communities and key transition nodes in weighted and unweighted networks is a prevalent problem in a wide range of disciplines. Here, we focus on the optimal clustering using variational kinetic parameters, linked to Markov processes defined on the underlying networks, namely, the slowest relaxation time and the Kemeny constant. We derive novel relations in terms of mean first passage times for optimizing clustering via the Kemeny constant and show that the optimal clustering boundaries have equal round-trip times to the clusters they separate. We also propose an efficient method that first projects the network nodes onto a 1D reaction coordinate and subsequently performs a variational boundary search using a parallel tempering algorithm, where the variational kinetic parameters act as an energy function to be extremized. We find that maximization of the Kemeny constant is effective in detecting communities, while the slowest relaxation time allows for detection of transition nodes. We demonstrate the validity of our method on several test systems, including synthetic networks generated from the stochastic block model and real world networks (Santa Fe Institute collaboration network, a network of co-purchased political books, and a street network of multiple cities in Luxembourg). Our approach is compared with existing clustering algorithms based on modularity and the robust Perron cluster analysis, and the identified transition nodes are compared with different notions of node centrality.

5.
Nano Lett ; 22(17): 7254-7260, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36037474

RESUMEN

Surface-enhanced Raman scattering (SERS) is typically assumed to occur at individual molecules neglecting intermolecular vibrational coupling. Here, we show instead how collective vibrations from infrared (IR) coupled dipoles are seen in SERS from molecular monolayers. Mixing IR-active molecules with IR-inactive spacer molecules controls the intermolecular separation. Intermolecular coupling leads to vibrational frequency upshifts up to 8 cm-1, tuning with the mixing fraction and IR dipole strength, in excellent agreement with microscopic models and density functional theory. These cooperative frequency shifts can be used as a ruler to measure intermolecular distance and disorder with angstrom resolution. We demonstrate this for photochemical reactions of 4-nitrothiophenol, which depletes the number of neighboring IR-active molecules and breaks the collective vibration, enabling direct tracking of the reaction. Collective molecular vibrations reshape SERS spectra and need to be considered in the analysis of vibrational spectra throughout analytical chemistry and sensing.


Asunto(s)
Espectrometría Raman , Vibración
6.
J Phys Chem A ; 126(28): 4657-4663, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35792893

RESUMEN

We present Molecular Vibration Explorer, a freely accessible online database and interactive tool for exploring vibrational spectra and tensorial light-vibration coupling strengths of a large collection of thiolated molecules. The "Gold" version of the database gathers the results from density functional theory calculations on 2800 commercially available thiol compounds linked to a gold atom, with the main motivation to screen the best molecules for THz and mid-infrared to visible upconversion. Additionally, the "Thiol" version of the database contains results for 1900 unbound thiolated compounds. They both provide access to a comprehensive set of computed spectroscopic parameters for all vibrational modes of all molecules in the database. The user can simultaneously investigate infrared absorption, Raman scattering, and vibrational sum- and difference-frequency generation cross sections. Molecules can be screened for various parameters in custom frequency ranges, such as a large Raman cross-section under a specific molecular orientation, or a large orientation-averaged sum-frequency generation (SFG) efficiency. The user can select polarization vectors for the electromagnetic fields, set the orientation of the molecule, and customize parameters for plotting the corresponding IR, Raman, and sum-frequency spectra. We illustrate the capabilities of this tool with selected applications in the field of surface-enhanced spectroscopy.

7.
Nature ; 535(7610): 127-30, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27296227

RESUMEN

Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter1, 2, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host­guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light­matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules­matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

8.
J Chem Phys ; 154(2): 024115, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33445891

RESUMEN

In a previous work [Pan et al., Molecules 23, 2500 (2018)], a charge projection scheme was reported, where outer molecular mechanical (MM) charges [>10 Å from the quantum mechanical (QM) region] were projected onto the electrostatic potential (ESP) grid of the QM region to accurately and efficiently capture long-range electrostatics in ab initio QM/MM calculations. Here, a further simplification to the model is proposed, where the outer MM charges are projected onto inner MM atom positions (instead of ESP grid positions). This enables a representation of the long-range MM electrostatic potential via augmentary charges (AC) on inner MM atoms. Combined with the long-range electrostatic correction function from Cisneros et al. [J. Chem. Phys. 143, 044103 (2015)] to smoothly switch between inner and outer MM regions, this new QM/MM-AC electrostatic model yields accurate and continuous ab initio QM/MM electrostatic energies with a 10 Å cutoff between inner and outer MM regions. This model enables efficient QM/MM cluster calculations with a large number of MM atoms as well as QM/MM calculations with periodic boundary conditions.

9.
J Am Chem Soc ; 142(3): 1382-1393, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31820966

RESUMEN

In this study, we have developed a highly enantioselective organocatalytic route to the (1S,2R)-2-(aminomethyl)cyclopentane-1-carboxylic acid monomer precursor, which has a cis-configuration between the C- and N-termini around the cyclopentane core. Kinetic measurements show that the product distribution changes over time due to epimerization of the C1 center. Computations suggest the cis-selectivity is a result of selective C-C bond formation, while subsequent steps appear to influence the selectivity at higher temperature. The resulting γ-amino acid residue was incorporated into a novel γ/α-peptide, which forms a well-ordered 10/12-helix with alternate H-bond directionality in spite of the smallest value of the ζ-angle yet observed for a helix of this type. This highly defined structure is also a result of the narrow range of potential ζ-angles in our monomer. In contrast, the larger range of potential ζ-values observed for the corresponding trans-system can be fulfilled by several competing helical structures.


Asunto(s)
Aminoácidos/química , Compuestos Orgánicos/química , Péptidos/química , Catálisis , Cristalografía por Rayos X , Estereoisomerismo
10.
J Chem Phys ; 153(21): 214111, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33291930

RESUMEN

We present here two novel algorithms for simulated tempering simulations, which break the detailed balance condition (DBC) but satisfy the skewed detailed balance to ensure invariance of the target distribution. The irreversible methods we present here are based on Gibbs sampling and concern breaking DBC at the update scheme of the temperature swaps. We utilize three systems as a test bed for our methods: a Markov chain Monte Carlo simulation on a simple system described by a one-dimensional double well potential, the Ising model, and molecular dynamics simulations on alanine pentapeptide (ALA5). The relaxation times of inverse temperature, magnetic susceptibility, and energy density for the Ising model indicate clear gains in sampling efficiency over conventional Gibbs sampling techniques with DBC and also over the conventionally used simulated tempering with the Metropolis-Hastings (MH) scheme. Simulations on ALA5 with a large number of temperatures indicate distinct gains in mixing times for inverse temperature and consequently the energy of the system compared to conventional MH. With no additional computational overhead, our methods were found to be more efficient alternatives to the conventionally used simulated tempering methods with DBC. Our algorithms should be particularly advantageous in simulations of large systems with many temperature ladders, as our algorithms showed a more favorable constant scaling in Ising spin systems as compared with both reversible and irreversible MH algorithms. In future applications, our irreversible methods can also be easily tailored to utilize a given dynamical variable other than temperature to flatten rugged free energy landscapes.


Asunto(s)
Algoritmos , Modelos Químicos , Oligopéptidos/química , Péptidos/química , Cadenas de Markov , Simulación de Dinámica Molecular , Temperatura , Termodinámica
11.
J Chem Phys ; 152(10): 104108, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171226

RESUMEN

Markov processes are widely used models for investigating kinetic networks. Here, we collate and present a variety of results pertaining to kinetic network models in a unified framework. The aim is to lay out explicit links between several important quantities commonly studied in the field, including mean first passage times (MFPTs), correlation functions, and the Kemeny constant. We provide new insights into (i) a simple physical interpretation of the Kemeny constant, (ii) a relationship to infer equilibrium distributions and rate matrices from measurements of MFPTs, and (iii) a protocol to reduce the dimensionality of kinetic networks based on specific requirements that the MFPTs in the coarse-grained system should satisfy. We prove that this protocol coincides with the one proposed by Hummer and Szabo [J. Phys. Chem. B 119, 9029 (2014)], and it leads to a variational principle for the Kemeny constant. Finally, we introduce a modification of this protocol, which preserves the Kemeny constant. Our work underpinning the theoretical aspects of kinetic networks will be useful in applications including milestoning and path sampling algorithms in molecular simulations.

12.
Proc Natl Acad Sci U S A ; 114(48): E10339-E10348, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133387

RESUMEN

Proton pumping A-type cytochrome c oxidase (CcO) terminates the respiratory chains of mitochondria and many bacteria. Three possible proton transfer pathways (D, K, and H channels) have been identified based on structural, functional, and mutational data. Whereas the D channel provides the route for all pumped protons in bacterial A-type CcOs, studies of bovine mitochondrial CcO have led to suggestions that its H channel instead provides this route. Here, we have studied H-channel function by performing atomistic molecular dynamics simulations on the entire, as well as core, structure of bovine CcO in a lipid-solvent environment. The majority of residues in the H channel do not undergo large conformational fluctuations. Its upper and middle regions have adequate hydration and H-bonding residues to form potential proton-conducting channels, and Asp51 exhibits conformational fluctuations that have been observed crystallographically. In contrast, throughout the simulations, we do not observe transient water networks that could support proton transfer from the N phase toward heme a via neutral His413, regardless of a labile H bond between Ser382 and the hydroxyethylfarnesyl group of heme a In fact, the region around His413 only became sufficiently hydrated when His413 was fixed in its protonated imidazolium state, but its calculated pKa is too low for this to provide the means to create a proton transfer pathway. Our simulations show that the electric dipole moment of residues around heme a changes with the redox state, hence suggesting that the H channel could play a more general role as a dielectric well.


Asunto(s)
Complejo IV de Transporte de Electrones/fisiología , Transporte de Electrón/fisiología , Hemo/análogos & derivados , Transporte Iónico/fisiología , Protones , Animales , Transporte Biológico Activo , Bovinos , Fenómenos Electromagnéticos , Complejo IV de Transporte de Electrones/química , Hemo/química , Hemo/fisiología , Mitocondrias/fisiología , Simulación de Dinámica Molecular , Agua/química , Agua/fisiología
13.
Nano Lett ; 19(3): 2051-2058, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30726095

RESUMEN

The resonance wavelength of a coupled plasmonic system is extremely sensitive to the distance between its metallic surfaces, resulting in "plasmon rulers". We explore this behavior in the subnanometer regime using self-assembled monolayers of bis-phthalocyanine molecules in a nanoparticle-on-mirror (NPoM) construct. These allow unprecedented subangstrom control over spacer thickness via choice of metal center, in a gap-size regime at the quantum-mechanical limit of plasmonic enhancement. A dramatic shift in the coupled plasmon resonance is observed as the gap size is varied from 0.39 to 0.41 nm. Existing theoretical models are unable to account for the observed spectral tuning, which requires inclusion of the quantum-classical interface, emphasizing the need for new treatments of light at the subnanoscale.

14.
J Biol Chem ; 293(25): 9724-9735, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29743239

RESUMEN

The high-energy sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS), generated by human PAPS synthase isoforms PAPSS1 and PAPSS2, is required for all human sulfation pathways. Sulfotransferase SULT2A1 uses PAPS for sulfation of the androgen precursor dehydroepiandrosterone (DHEA), thereby reducing downstream activation of DHEA to active androgens. Human PAPSS2 mutations manifest with undetectable DHEA sulfate, androgen excess, and metabolic disease, suggesting that ubiquitous PAPSS1 cannot compensate for deficient PAPSS2 in supporting DHEA sulfation. In knockdown studies in human adrenocortical NCI-H295R1 cells, we found that PAPSS2, but not PAPSS1, is required for efficient DHEA sulfation. Specific APS kinase activity, the rate-limiting step in PAPS biosynthesis, did not differ between PAPSS1 and PAPSS2. Co-expression of cytoplasmic SULT2A1 with a cytoplasmic PAPSS2 variant supported DHEA sulfation more efficiently than co-expression with nuclear PAPSS2 or nuclear/cytosolic PAPSS1. Proximity ligation assays revealed protein-protein interactions between SULT2A1 and PAPSS2 and, to a lesser extent, PAPSS1. Molecular docking studies showed a putative binding site for SULT2A1 within the PAPSS2 APS kinase domain. Energy-dependent scoring of docking solutions identified the interaction as specific for the PAPSS2 and SULT2A1 isoforms. These findings elucidate the mechanistic basis for the selective requirement for PAPSS2 in human DHEA sulfation.


Asunto(s)
Carcinoma Corticosuprarrenal/metabolismo , Sulfato de Deshidroepiandrosterona/metabolismo , Complejos Multienzimáticos/metabolismo , Sulfato Adenililtransferasa/metabolismo , Sulfotransferasas/metabolismo , Sitios de Unión , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Citosol/metabolismo , Sulfato de Deshidroepiandrosterona/química , Humanos , Simulación del Acoplamiento Molecular , Complejos Multienzimáticos/química , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Sulfato Adenililtransferasa/química , Sulfotransferasas/química , Células Tumorales Cultivadas
15.
Phys Chem Chem Phys ; 21(41): 22700-22703, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31579899

RESUMEN

We use cold ion spectroscopy and quantum-chemical computations to solve the structures of opioid peptides enkephalins in the gas phase. The derived structural parameters clearly correlate with the known pharmacological efficiency of the studied drugs, suggesting that gas-phase methods, perhaps, can be used for predicting the relative potency of ligand drugs that target the hydrophobic pockets of receptors.


Asunto(s)
Encefalinas/química , Gases/química , Modelos Moleculares , Análisis Espectral , Encefalinas/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Neurotransmisores/química , Neurotransmisores/farmacología , Relación Estructura-Actividad
16.
J Chem Phys ; 150(13): 134107, 2019 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-30954057

RESUMEN

Markov state models (MSMs) provide some of the simplest mathematical and physical descriptions of dynamical and thermodynamical properties of complex systems. However, typically, the large dimensionality of biological systems studied makes them prohibitively expensive to work in fully Markovian regimes. In this case, coarse graining can be introduced to capture the key dynamical processes-slow degrees of the system-and reduce the dimension of the problem. Here, we introduce several possible options for such Markovian coarse graining, including previously commonly used choices: the local equilibrium and the Hummer Szabo approaches. We prove that the coarse grained lower dimensional MSM satisfies a variational principle with respect to its slowest relaxation time scale. This provides an excellent framework for optimal coarse graining, as previously demonstrated. Here, we show that such optimal coarse graining to two or three states has a simple physical interpretation in terms of mean first passage times and fluxes between the coarse grained states. The results are verified numerically using both analytic test potentials and data from explicit solvent molecular dynamics simulations of pentalanine. This approach of optimizing and interpreting clustering protocols has broad applicability and can be used in time series analysis of large data.

17.
Brief Bioinform ; 17(4): 593-602, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26443615

RESUMEN

The detailed, atomistic-level understanding of molecular signaling along the tumor-suppressive Hippo signaling pathway that controls tissue homeostasis by balancing cell proliferation and death through apoptosis is a promising avenue for the discovery of novel anticancer drug targets. The activation of kinases such as Mammalian STE20-Like Protein Kinases 1 and 2 (MST1 and MST2)-modulated through both homo- and heterodimerization (e.g. interactions with Ras association domain family, RASSF, enzymes)-is a key upstream event in this pathway and remains poorly understood. On the other hand, RASSFs (such as RASSF1A or RASSF5) act as important apoptosis activators and tumor suppressors, although their exact regulatory roles are also unclear. We present recent molecular studies of signaling along the Ras-RASSF-MST pathway, which controls growth and apoptosis in eukaryotic cells, including a variety of modern molecular modeling and simulation techniques. Using recently available structural information, we discuss the complex regulatory scenario according to which RASSFs perform dual signaling functions, either preventing or promoting MST2 activation, and thus control cell apoptosis. Here, we focus on recent studies highlighting the special role being played by the specific interactions between the helical Salvador/RASSF/Hippo (SARAH) domains of MST2 and RASSF1a or RASSF5 enzymes. These studies are crucial for integrating atomistic-level mechanistic information about the structures and conformational dynamics of interacting proteins, with information available on their system-level functions in cellular signaling.


Asunto(s)
Unión Proteica , Animales , Apoptosis , Modelos Moleculares , Proteínas Serina-Treonina Quinasas , Transducción de Señal
18.
J Chem Phys ; 149(7): 072324, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134666

RESUMEN

Markov state models (MSMs) are more and more widely used in the analysis of molecular simulations to incorporate multiple trajectories together and obtain more accurate time scale information of the slowest processes in the system. Typically, however, multiple lagtimes are used and analyzed as input parameters, yet convergence with respect to the choice of lagtime is not always possible. Here, we present a simple method for calculating the slowest relaxation time (RT) of the system in the limit of very long lagtimes. Our approach relies on the fact that the second eigenvector's autocorrelation function of the propagator will be approximately single exponential at long lagtimes. This allows us to obtain a simple equation for the behavior of the MSM's relaxation time as a function of the lagtime with only two free parameters, one of these being the RT of the system. We demonstrate that the second parameter is a useful indicator of how Markovian a selected variable is for building the MSM. Fitting this function to data gives a limiting value for the optimal variational RT. Testing this on analytic and molecular dynamics data for Ala5 and umbrella sampling-biased ion channel simulations shows that the function accurately describes the behavior of the RT and furthermore that this RT can improve noticeably the value calculated at the longest accessible lagtime. We compare our RT limit to the hidden Markov model (HMM) approach that typically finds RTs of comparable values. However, HMMs cannot be used in conjunction with biased simulation data, requiring more complex algorithms to construct than MSMs, and the derived RTs are not variational, leading to ambiguity in the choice of lagtime at which to build the HMM.

19.
Molecules ; 23(10)2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30274290

RESUMEN

In QM/MM calculations, it is essential to handle electrostatic interactions between the QM and MM subsystems accurately and efficiently. To achieve maximal efficiency, it is convenient to adopt a hybrid scheme, where the QM electron density is used explicitly in the evaluation of short-range QM/MM electrostatic interactions, while a multipolar representation for the QM electron density is employed to account for the long-range QM/MM electrostatic interactions. In order to avoid energy discontinuity at the cutoffs, which separate the short- and long-range QM/MM electrostatic interactions, a switching function should be utilized to ensure a smooth potential energy surface. In this study, we benchmarked the accuracy of such hybrid embedding schemes for QM/MM electrostatic interactions using different multipolar representations, switching functions and cutoff distances. For test systems (neutral and anionic oxyluciferin in MM (aqueous and enzyme) environments), the best accuracy was acquired with a combination of QM electrostatic potential (ESP) charges and dipoles and two switching functions (long-range electrostatic corrections (LREC) and Switch) in the treatment of long-range QM/MM electrostatics. It allowed us to apply a 10Å distance cutoff and still obtain QM/MM electrostatics/polarization energies within 0.1 kcal/mol and time-dependent density functional theory (TDDFT)/MM vertical excitation energies within 10-3 eV from theoretical reference values.


Asunto(s)
Modelos Moleculares , Simulación por Computador , Electrones , Indoles/química , Luciferasas de Luciérnaga/química , Estructura Molecular , Pirazinas/química , Teoría Cuántica , Electricidad Estática , Termodinámica , Factores de Tiempo , Agua/química
20.
PLoS Comput Biol ; 12(10): e1005051, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27716844

RESUMEN

RASSF enzymes act as key apoptosis activators and tumor suppressors, being downregulated in many human cancers, although their exact regulatory roles remain unknown. A key downstream event in the RASSF pathway is the regulation of MST kinases, which are main effectors of RASSF-induced apoptosis. The regulation of MST1/2 includes both homo- and heterodimerization, mediated by helical SARAH domains, though the underlying molecular interaction mechanism is unclear. Here, we study the interactions between RASSF1A, RASSF5, and MST2 SARAH domains by using both atomistic molecular simulation techniques and experiments. We construct and study models of MST2 homodimers and MST2-RASSF SARAH heterodimers, and we identify the factors that control their high molecular stability. In addition, we also analyze both computationally and experimentally the interactions of MST2 SARAH domains with a series of synthetic peptides particularly designed to bind to it, and hope that our approach can be used to address some of the challenging problems in designing new anti-cancer drugs.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/ultraestructura , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/química , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/ultraestructura , Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestructura , Simulación del Acoplamiento Molecular , Sitios de Unión , Dimerización , Activación Enzimática , Unión Proteica , Conformación Proteica , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA