Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733369

RESUMEN

BACKGROUND: Radiomics models trained on data from one center typically show a decline of performance when applied to data from external centers, hindering their introduction into large-scale clinical practice. Current expert recommendations suggest to use only reproducible radiomics features isolated by multiscanner test-retest experiments, which might help to overcome the problem of limited generalizability to external data. PURPOSE: To evaluate the influence of using only a subset of robust radiomics features, defined in a prior in vivo multi-MRI-scanner test-retest-study, on the performance and generalizability of radiomics models. STUDY TYPE: Retrospective. POPULATION: Patients with monoclonal plasma cell disorders. Training set (117 MRIs from center 1); internal test set (42 MRIs from center 1); external test set (143 MRIs from center 2-8). FIELD STRENGTH/SEQUENCE: 1.5T and 3.0T; T1-weighted turbo spin echo. ASSESSMENT: The task for the radiomics models was to predict plasma cell infiltration, determined by bone marrow biopsy, noninvasively from MRI. Radiomics machine learning models, including linear regressor, support vector regressor (SVR), and random forest regressor (RFR), were trained on data from center 1, using either all radiomics features, or using only reproducible radiomics features. Models were tested on an internal (center 1) and a multicentric external data set (center 2-8). STATISTICAL TESTS: Pearson correlation coefficient r and mean absolute error (MAE) between predicted and actual plasma cell infiltration. Fisher's z-transformation, Wilcoxon signed-rank test, Wilcoxon rank-sum test; significance level P < 0.05. RESULTS: When using only reproducible features compared with all features, the performance of the SVR on the external test set significantly improved (r = 0.43 vs. r = 0.18 and MAE = 22.6 vs. MAE = 28.2). For the RFR, the performance on the external test set deteriorated when using only reproducible instead of all radiomics features (r = 0.33 vs. r = 0.44, P = 0.29 and MAE = 21.9 vs. MAE = 20.5, P = 0.10). CONCLUSION: Using only reproducible radiomics features improves the external performance of some, but not all machine learning models, and did not automatically lead to an improvement of the external performance of the overall best radiomics model. TECHNICAL EFFICACY: Stage 2.

2.
Eur Radiol ; 34(7): 4484-4491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38133673

RESUMEN

OBJECTIVE: To assess the potential dose reduction achievable with clinical photon-counting CT (PCCT) in ultra-high resolution (UHR) mode compared to acquisitions using the standard resolution detector mode (Std). MATERIALS AND METHODS: With smaller detector pixels, PCCT achieves far higher spatial resolution than energy-integrating (EI) CT systems. The reconstruction of UHR acquisitions to the lower spatial resolution of conventional systems results in an image noise and radiation dose reduction. We quantify this small pixel effect in measurements of semi-anthropomorphic abdominal phantoms of different sizes as well as in a porcine knuckle in the first clinical PCCT system by using the UHR mode (0.2 mm pixel size at isocenter) in comparison to the standard resolution mode (0.4 mm). At different slice thicknesses (0.4 up to 4 mm) and dose levels between 4 and 12 mGy, reconstructions using filtered backprojection were performed to the same target spatial resolution, i.e., same modulation transfer function, using both detector modes. Image noise and the resulting potential dose reduction was quantified as a figure of merit. RESULTS: Images acquired using the UHR mode yield lower noise in comparison to acquisitions using standard pixels at the same resolution and noise level. This holds for sharper convolution kernels at the spatial resolution limit of the standard mode, e.g., up to a factor 3.2 in noise reduction and a resulting potential dose reduction of up to almost 90%. CONCLUSION: Using sharper convolution kernels, UHR acquisitions allow for a significant dose reduction compared to acquisitions using the standard detector mode. CLINICAL RELEVANCE: Acquisitions should always be performed using the ultra-high resolution detector mode, if possible, to benefit from the intrinsic noise and dose reduction. KEY POINTS: • Ionizing radiation used in computed tomography examinations is a concern to public health. • The ultra-high resolution of novel photon-counting systems can be invested towards a noise and dose reduction if only a spatial resolution below the resolution limit of the detector is desired. • Acquisitions should always be performed in ultra-high resolution mode, if possible, to benefit from an intrinsic dose reduction.


Asunto(s)
Fantasmas de Imagen , Fotones , Dosis de Radiación , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Porcinos , Animales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
3.
Eur Radiol ; 33(2): 803-811, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35986773

RESUMEN

OBJECTIVES: Photon-counting detector computed tomography (PCD-CT) is a promising new technique for CT imaging. The aim of the present study was the in vitro comparison of coil-related artifacts in PCD-CT and conventional energy-integrating detector CT (EID-CT) using a comparable standard brain imaging protocol before and after metal artifact reduction (MAR). METHODS: A nidus-shaped rubber latex, resembling an aneurysm of the cerebral arteries, was filled with neurovascular platinum coils and inserted into a brain imaging phantom. Image acquisition and reconstruction were repeatedly performed for PCD-CT and EID-CT (n = 10, respectively) using a standard brain imaging protocol. Moreover, linear interpolation MAR was performed for PCD-CT and EID-CT images. The degree of artifacts was analyzed quantitatively (standard deviation in a donut-shaped region of interest) and qualitatively (5-point scale analysis). RESULTS: Quantitative and qualitative analysis demonstrated a lower degree of metal artifacts in the EID-CT images compared to the total-energy PCD-CT images (e.g., 82.99 ± 7.89 Hounsfield units (HU) versus 90.35 ± 6.28 HU; p < 0.001) with no qualitative difference between the high-energy bin PCD-CT images and the EID-CT images (4.18 ± 0.37 and 3.70 ± 0.64; p = 0.575). After MAR, artifacts were more profoundly reduced in the PCD-CT images compared to the EID-CT images in both analyses (e.g., 2.35 ± 0.43 and 3.18 ± 0.34; p < 0.001). CONCLUSION: PCD-CT in combination with MAR have the potential to provide an improved option for reduction of coil-related artifacts in cerebral imaging in this in vitro study. KEY POINTS: • Photon-counting detector CT produces more artifacts compared to energy-integrating detector CT without metal artifact reduction in cerebral in vitro imaging after neurovascular coil-embolization. • Spectral information of PCD-CT provides the potential for new post-processing techniques, since the coil-related artifacts were lower in PCD-CT images compared to EID-CT images after linear interpolation metal artifact reduction in this in vitro study.


Asunto(s)
Artefactos , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen , Fotones , Neuroimagen
4.
Eur Radiol ; 33(7): 4905-4914, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36809435

RESUMEN

OBJECTIVES: Radiomics image data analysis offers promising approaches in research but has not been implemented in clinical practice yet, partly due to the instability of many parameters. The aim of this study is to evaluate the stability of radiomics analysis on phantom scans with photon-counting detector CT (PCCT). METHODS: Photon-counting CT scans of organic phantoms consisting of 4 apples, kiwis, limes, and onions each were performed at 10 mAs, 50 mAs, and 100 mAs with 120-kV tube current. The phantoms were segmented semi-automatically and original radiomics parameters were extracted. This was followed by statistical analysis including concordance correlation coefficients (CCC), intraclass correlation coefficients (ICC), as well as random forest (RF) analysis, and cluster analysis to determine the stable and important parameters. RESULTS: Seventy-three of the 104 (70%) extracted features showed excellent stability with a CCC value > 0.9 when compared in a test and retest analysis, and 68 features (65.4%) were stable compared to the original in a rescan after repositioning. Between the test scans with different mAs values, 78 (75%) features were rated with excellent stability. Eight radiomics features were identified that had an ICC value greater than 0.75 in at least 3 of 4 groups when comparing the different phantoms in a phantom group. In addition, the RF analysis identified many features that are important for distinguishing the phantom groups. CONCLUSION: Radiomics analysis using PCCT data provides high feature stability on organic phantoms, which may facilitate the implementation of radiomics analysis likewise in clinical routine. KEY POINTS: • Radiomics analysis using photon-counting computed tomography provides high feature stability. • Photon-counting computed tomography may pave the way for implementation of radiomics analysis in clinical routine.


Asunto(s)
Bosques Aleatorios , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Fotones
5.
BMC Med Imaging ; 23(1): 97, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495950

RESUMEN

BACKGROUND: Cardiovascular diseases remain the world's primary cause of death. The identification and treatment of patients at risk of cardiovascular events thus are as important as ever. Adipose tissue is a classic risk factor for cardiovascular diseases, has been linked to systemic inflammation, and is suspected to contribute to vascular calcification. To further investigate this issue, the use of texture analysis of adipose tissue using radiomics features could prove a feasible option. METHODS: In this retrospective single-center study, 55 patients (mean age 56, 34 male, 21 female) were scanned on a first-generation photon-counting CT. On axial unenhanced images, periaortic adipose tissue surrounding the thoracic descending aorta was segmented manually. For feature extraction, patients were divided into three groups, depending on coronary artery calcification (Agatston Score 0, Agatston Score 1-99, Agatston Score ≥ 100). 106 features were extracted using pyradiomics. R statistics was used for statistical analysis, calculating mean and standard deviation with Pearson correlation coefficient for feature correlation. Random Forest classification was carried out for feature selection and Boxplots and heatmaps were used for visualization. Additionally, monovariable logistic regression predicting an Agatston Score > 0 was performed, selected features were tested for multicollinearity and a 10-fold cross-validation investigated the stability of the leading feature. RESULTS: Two higher-order radiomics features, namely "glcm_ClusterProminence" and "glcm_ClusterTendency" were found to differ between patients without coronary artery calcification and those with coronary artery calcification (Agatston Score ≥ 100) through Random Forest classification. As the leading differentiating feature "glcm_ClusterProminence" was identified. CONCLUSION: Changes in periaortic adipose tissue texture seem to correlate with coronary artery calcium score, supporting a possible influence of inflammatory or fibrotic activity in perivascular adipose tissue. Radiomics features may potentially aid as corresponding biomarkers in the future.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Humanos , Masculino , Femenino , Calcio , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/efectos adversos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen
6.
Stroke ; 50(10): 2799-2804, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31426729

RESUMEN

Background and Purpose- Large vessel occlusion stroke leads to highly variable hyperacute infarction growth. Our aim was to identify clinical and imaging parameters associated with hyperacute infarction growth in patients with an large vessel occlusion stroke of the anterior circulation. Methods- Seven hundred twenty-two consecutive patients with acute stroke were prospectively included in our monocentric stroke registry between 2009 and 2017. We selected all patients with a large vessel occlusion stroke of the anterior circulation, documented times from symptom onset, and CT perfusion on admission for our analysis (N=178). Ischemic core volume was determined with CT perfusion using automated thresholds. Hyperacute infarction growth was defined as ischemic core volume divided by times from symptom onset, assuming linear progression during times from symptom onset to imaging on admission. For collateral assessment, the regional leptomeningeal collateral score (rLMC) was used. Clinical data included the National Institutes of Health Stroke Scale score on admission and cardiovascular risk factors. Regression analysis was performed to adjust for confounders. Results- Median ischemic core volume was 34.4 mL, and median hyperacute infarction growth was 0.27 mL/min. In regression analysis including age, sex, National Institutes of Health Stroke Scale, clot burden score, diabetes mellitus, smoking, hypercholesteremia, hypertension, Alberta Stroke Program Early CT Score, and rLMC scores, only the rLMC score had a significant, independent association with hyperacute infarction growth (adjusted ß=-0.35; P<0.001). Trichotomizing patients by rLMC scores yielded 65 patients with good (rLMC >15), 67 with intermediate (rLMC 11-15) and 46 with poor collaterals (rLMC <11) with an infarction growth of 0.17 mL/min, 0.26 mL/min, and 0.41 mL/min, respectively. Conclusions- Hyperacute infarction growth strongly depends on collaterals. In primary stroke centers, hyperacute infarction growth may be extrapolated to estimate the stroke progression during transfer times to thrombectomy centers and to support decisions on which patients to transfer.


Asunto(s)
Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/patología , Circulación Colateral , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Anciano , Anciano de 80 o más Años , Infarto Cerebral/etiología , Angiografía por Tomografía Computarizada/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen/métodos , Imagen de Perfusión/métodos , Accidente Cerebrovascular/complicaciones
7.
Radiology ; 291(2): 451-458, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30888935

RESUMEN

Background Recent studies have proven the effectiveness of thrombectomy up to 24 hours after stroke onset for patients with specific criteria at advanced CT or MRI. Clinical implementation of treatment in this extended time window remains a challenge, as many stroke centers do not routinely use advanced imaging. Purpose To determine whether automated cerebral x-ray attenuation measurements at noncontrast CT provide information on the presence of CT perfusion-defined ischemic core as applied in late time windows for thrombectomy. Materials and Methods In this retrospective study, patients with middle cerebral artery stroke due to proximal occlusion from 2009 to 2017 were included. All patients underwent noncontrast CT and CT perfusion. Automated software was used to calculate relative Hounsfield unit (rHU) values for Alberta Stroke Program Early CT Score (ASPECTS) regions on noncontrast CT images as the ratio of x-ray attenuation between ischemic versus non-ischemic hemispheres. Sensitivity, specificity, and diagnostic performance of rHU and composite rHU-ASPECTS, a score incorporating rHU from all regions, were analyzed for the classification of regional ischemic core and late time window thrombectomy criteria at CT perfusion. Results Data in a total of 200 patients were evaluated (105 women [mean age, 74 years ± 14 {standard deviation}] and 95 men [mean age, 76 years ± 14]). There were 121 patients in the validation cohort and 79 patients in the independent test cohort. Compared among all examined regions, rHU values yielded the best classification of ischemic core for the caudate nucleus, the lentiform nucleus, and the insula (with areas under the receiver operating characteristic curve [AUCs] ranging from 0.70 to 0.77; P < .001 for each). The composite rHU-ASPECTS score allowed classification of CT perfusion imaging selection criteria of ischemic core sizes of less than 70 mL and target mismatch of greater than 1.8 with AUCs of 0.80 (P = .001; 75% sensitivity and 83% specificity) in the test cohort and 0.74 (P < .001; 58% sensitivity and 82% specificity) in the validation cohort. Conclusion Noncontrast CT x-ray attenuation measurements identify Alberta Stroke Program Early CT Score regions classified as ischemic core at CT perfusion. This approach may serve as a selection criteria surrogate for thrombectomy in late time windows. © RSNA, 2019 Online supplemental material is available for this article.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Imagen de Perfusión/métodos , Tomografía Computarizada por Rayos X/métodos , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Isquemia Encefálica/patología , Angiografía por Tomografía Computarizada , Femenino , Humanos , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/patología , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , Trombectomía
8.
Eur Radiol ; 29(5): 2669-2676, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30552476

RESUMEN

OBJECTIVES: Parameter maps based on wavelet-transform post-processing of dynamic perfusion data offer an innovative way of visualizing blood vessels in a fully automated, user-independent way. The aims of this study were (i) a proof of concept regarding wavelet-based analysis of dynamic susceptibility contrast (DSC) MRI data and (ii) to demonstrate advantages of wavelet-based measures compared to standard cerebral blood volume (CBV) maps in patients with the initial diagnosis of glioblastoma (GBM). METHODS: Consecutive 3-T DSC MRI datasets of 46 subjects with GBM (mean age 63.0 ± 13.1 years, 28 m) were retrospectively included in this feasibility study. Vessel-specific wavelet magnetic resonance perfusion (wavelet-MRP) maps were calculated using the wavelet transform (Paul wavelet, order 1) of each voxel time course. Five different aspects of image quality and tumor delineation were each qualitatively rated on a 5-point Likert scale. Quantitative analysis included image contrast and contrast-to-noise ratio. RESULTS: Vessel-specific wavelet-MRP maps could be calculated within a mean time of 2:27 min. Wavelet-MRP achieved higher scores compared to CBV in all qualitative ratings: tumor depiction (4.02 vs. 2.33), contrast enhancement (3.93 vs. 2.23), central necrosis (3.86 vs. 2.40), morphologic correlation (3.87 vs. 2.24), and overall impression (4.00 vs. 2.41); all p < .001. Quantitative image analysis showed a better image contrast and higher contrast-to-noise ratios for wavelet-MRP compared to conventional perfusion maps (all p < .001). CONCLUSIONS: wavelet-MRP is a fast and fully automated post-processing technique that yields reproducible perfusion maps with a clearer vascular depiction of GBM compared to standard CBV maps. KEY POINTS: • Wavelet-MRP offers high-contrast perfusion maps with a clear delineation of focal perfusion alterations. • Both image contrast and visual image quality were beneficial for wavelet-MRP compared to standard perfusion maps like CBV. • Wavelet-MRP can be automatically calculated from existing dynamic susceptibility contrast (DSC) perfusion data.


Asunto(s)
Neoplasias Encefálicas/patología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Perfusión/métodos , Femenino , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
9.
J Stroke Cerebrovasc Dis ; 28(1): 227-228, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30314761

RESUMEN

BACKGROUND: Anton's syndrome is a rare neurological disorder characterized by a combination of visual anosognosia and confabulation of visual experience, most often seen after bilateral ischemic damage to the posterior occipital cortex. CASE REPORT: We report the first case of an acute synchronous P2 occlusion as confirmed by multiparametric computed tomography (CT) including perfusion. After the administration of Recombinant tissue plasminogen activator (rtPA), Anton's syndrome completely resolved. CONCLUSION: Multiparametric CT imaging may aid in quickly proving the underlying stroke in Anton's syndrome, especially helpful considering the discrepancy between the patient's perception and clinical examination results.


Asunto(s)
Ceguera Cortical/tratamiento farmacológico , Ceguera Cortical/etiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Terapia Trombolítica , Administración Intravenosa , Anciano de 80 o más Años , Ceguera Cortical/diagnóstico por imagen , Diagnóstico Diferencial , Femenino , Fibrinolíticos/administración & dosificación , Humanos , Lóbulo Occipital/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Activador de Tejido Plasminógeno/administración & dosificación
10.
Int J Cardiovasc Imaging ; 39(5): 1065-1073, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36773035

RESUMEN

Coronary computed tomography angiography has become a mainstay in diagnosing coronary artery disease and is increasingly used in screening symptomatic patients. Recently, photon-counting computed tomography (PCCT) has been introduced into clinical practice, offering higher spatial and temporal resolution. As the applied radiation dose is highly dependent on the choice of scan mode and is lowest using the ultra-fast high-pitch (FLASH) mode, guidelines for their application are needed. From a retrospective study investigating the properties of a novel photon-counting computed tomography, all patients who underwent FLASH-mode PCCT angiography were selected between January and April 2022. This resulted in a study population of 46 men and 27 women. We recorded pre- and intrascan ECG readings and calculated heart rate (maximum heart rate 73 bpm) as well heart rate variability (maximum HRV 37 bpm) as measured by the standard deviation of the heart rate. Diagnostic quality and motion artifacts scores were recorded for each coronary artery segment by consensus between two readers. We found a highly significant association between heart rate variability and image quality (p < 0.001). The heart rate itself was not independently associated with image quality. Both heart rate and heart rate variability were significantly associated with the presence of motion artifacts in a combined model. Scan heart rate variability-but not heart rate itself-is a highly significant predictor of reduced image quality on high-pitch coronary photon-counting computed tomography angiography. This may be due to better scanner architecture and an increased temporal resolution compared to conventional energy-integrating detector computed tomography, which has to be addressed in a comparison study in the future.


Asunto(s)
Angiografía por Tomografía Computarizada , Masculino , Humanos , Femenino , Frecuencia Cardíaca , Estudios Retrospectivos , Estudios de Factibilidad , Valor Predictivo de las Pruebas , Angiografía Coronaria/métodos , Dosis de Radiación
11.
Eur J Radiol ; 167: 111026, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37639843

RESUMEN

PURPOSE: According to PI-RADS v2.1, T2-weighted imaging (T2WI) is the dominant sequence for transition zone (TZ) lesions. This study aimed to assess, whether diffusion-weighted imaging (DWI) information influences the assignment of T2WI scores. METHOD: Out of 283 prostate MRI examinations with correlated biopsy results, fourty-four patients were selected retrospectively: first, 22 patients with a TZ lesion with T2WI and DWI scores ≥ 4, to represent lesions with unequivocal suspicion on T2WI and DWI. Second, 22 additional patients with TZ lesions of similar T2WI appearance but with corresponding DWI score ≤ 3 were added as control. Four residents and one board-certified radiologist each performed two assessments of the included patients: First, only T2WI was available (T2-only read); second, both T2WI and DWI sequences were available (biparametric read). Lesion scores were assessed using Wilcoxon signed-rank test, inter-reader agreement using weighted kappa and Kendall's W statistics, and sensitivity/specificity using McNemar test. RESULTS: The T2WI scores were significantly different between the T2-only and biparametric read for 3 out of 4 residents (p ≤ 0.049) but not for the radiologist. The overall PI-RADS scores derived from the two reading sessions differed considerably for 35/220 cases (all readers pooled). Inter-reader agreement was fair for the T2WI and overall PI-RADS scores (mean kappa 0.27-0.30) and moderate for the DWI scores (mean kappa 0.43). CONCLUSIONS: For inexperienced readers, assessment of T2WI is variable and potentially biased by availability of DWI information, which can lead to changes of overall PI-RADS score and consequently clinical management. Assessment of T2WI should be performed before reviewing DWI to ensure non-biased interpretation of TZ lesions in the dominant sequence.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Estudios Retrospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética
12.
Z Med Phys ; 33(2): 155-167, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35868888

RESUMEN

X-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm. This level of spatial resolution is in the order of dedicated preclinical micro-CT systems. However so far, the need for different dedicated clinical and preclinical systems often hinders the rapid translation of early research results to applications in men. This drawback might be overcome by ultra-high resolution (UHR) clinical photon-counting CT unifying preclinical and clinical research capabilities in a single machine. Herein, the prototype of a clinical UHR PCD CT (SOMATOM CounT, Siemens Healthineers, Forchheim, Germany) was used. The system comprises a conventional energy-integrating detector (EID) and a novel photon-counting detector (PCD). While the EID provides a pixel size of 0.6 mm in the centre of rotation, the PCD provides a pixel size of 0.25 mm. Additionally, it provides a quantification of photon energies by sorting them into up to four distinct energy bins. This acquisition of multi-energy data allows for a multitude of applications, e.g. pseudo-monochromatic imaging. In particular, we examine the relation between spatial resolution, image noise and administered radiation dose for a multitude of use-cases. These cases include ultra-high resolution and multi-energy acquisitions of mice administered with a prototype bismuth-based contrast agent (nanoPET Pharma, Berlin, Germany) as well as larger animals and actual patients. The clinical EID provides a spatial resolution of about 9 lp/cm (modulation transfer function at 10%, MTF10%) while UHR allows for the acquisition of images with up to 16 lp/cm allowing for the visualization of all relevant anatomical structures in preclinical and clinical specimen. The spectral capabilities of the system enable a variety of applications previously not available in preclinical research such as pseudo-monochromatic images. Clinical ultra-high resolution photon-counting CT has the potential to unify preclinical and clinical research on a single system enabling versatile imaging of specimens and individuals ranging from mice to man.


Asunto(s)
Tomografía Computarizada por Rayos X , Investigación Biomédica Traslacional , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Tomógrafos Computarizados por Rayos X , Medios de Contraste , Fotones
13.
Br J Radiol ; 96(1145): 20220745, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37001052

RESUMEN

OBJECTIVE: To investigate the reproducibility of size measurements of focal bone marrow lesions (FL) in MRI in patients with monoclonal plasma cell disorders under variation of patient positioning and observer. METHODS: A data set from a prospective test-retest study was used, in which 37 patients with a total of 140 FL had undergone 2 MRI scans with identical parameters after patient repositioning. Two readers measured long and short axis diameter on the initial scan in T1 weighted, T2 weighted short tau inversion recovery and diffusion-weighted imaging sequences. The first reader additionally measured FL on the retest-scan. The Bland-Altman method was used to assess limits of agreement (LoA), and the frequencies of absolute size changes were calculated. RESULTS: In the simple test-retest experiment with one identical reader, a deviation of ≥1 mm / ≥2 mm / ≥3 mm for the long axis diameter in T1 weighted images was observed in 66% / 25% / 8% of cases. When comparing measurements of one reader on the first scan to the measurement of the other reader on the retest scan, a change of ≥1 mm / ≥3 mm / ≥5 mm for the long axis diameter in T1 weighted images was observed in 78% / 21% / 5% of cases. CONCLUSION: Small deviations in FL size are common and probably due to variation in patient positioning or inter-rater variability alone, without any actual biological change of the FL. Knowledge of the uncertainty associated with size measurements of FLs is critical for radiologists and oncologists when interpreting changes in FL size in clinical practice and in clinical trials. ADVANCES IN KNOWLEDGE: According to the MY-RADs criteria, size measurements of focal lesions in MRI are now of relevance for response assessment in patients with monoclonal plasma cell disorders.Size changes of 1 or 2 mm are frequently observed due to uncertainty of the measurement only, while the actual focal lesion has not undergone any biological change.Size changes of at least 6 mm or more in T1 weighted or T2 weighted short tau inversion recovery sequences occur in only 5% or less of cases when the focal lesion has not undergone any biological change.


Asunto(s)
Enfermedades Óseas , Mieloma Múltiple , Humanos , Mieloma Múltiple/diagnóstico por imagen , Médula Ósea/diagnóstico por imagen , Estudios Prospectivos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos
14.
Cancer Imaging ; 23(1): 95, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798797

RESUMEN

OBJECTIVES: The goal of this study is to demonstrate the performance of radiomics and CNN-based classifiers in determining the primary origin of gastrointestinal liver metastases for visually indistinguishable lesions. METHODS: In this retrospective, IRB-approved study, 31 pancreatic cancer patients with 861 lesions (median age [IQR]: 65.39 [56.87, 75.08], 48.4% male) and 47 colorectal cancer patients with 435 lesions (median age [IQR]: 65.79 [56.99, 74.62], 63.8% male) were enrolled. A pretrained nnU-Net performed automated segmentation of 1296 liver lesions. Radiomics features for each lesion were extracted using pyradiomics. The performance of several radiomics-based machine-learning classifiers was investigated for the lesions and compared to an image-based deep-learning approach using a DenseNet-121. The performance was evaluated by AUC/ROC analysis. RESULTS: The radiomics-based K-nearest neighbor classifier showed the best performance on an independent test set with AUC values of 0.87 and an accuracy of 0.67. In comparison, the image-based DenseNet-121-classifier reached an AUC of 0.80 and an accuracy of 0.83. CONCLUSIONS: CT-based radiomics and deep learning can distinguish the etiology of liver metastases from gastrointestinal primary tumors. Compared to deep learning, radiomics based models showed a varying generalizability in distinguishing liver metastases from colorectal cancer and pancreatic adenocarcinoma.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Aprendizaje Profundo , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Masculino , Femenino , Estudios Retrospectivos , Neoplasias Pancreáticas/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Pancreáticas
15.
Invest Radiol ; 58(4): 253-264, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165988

RESUMEN

OBJECTIVES: Despite the extensive number of publications in the field of radiomics, radiomics algorithms barely enter large-scale clinical application. Supposedly, the low external generalizability of radiomics models is one of the main reasons, which hinders the translation from research to clinical application. The objectives of this study were to investigate reproducibility of radiomics features (RFs) in vivo under variation of patient positioning, magnetic resonance imaging (MRI) sequence, and MRI scanners, and to identify a subgroup of RFs that shows acceptable reproducibility across all different acquisition scenarios. MATERIALS AND METHODS: Between November 30, 2020 and February 16, 2021, 55 patients with monoclonal plasma cell disorders were included in this prospective, bi-institutional, single-vendor study. Participants underwent one reference scan at a 1.5 T MRI scanner and several retest scans: once after simple repositioning, once with a second MRI protocol, once at another 1.5 T scanner, and once at a 3 T scanner. Radiomics feature from the bone marrow of the left hip bone were extracted, both from original scans and after different image normalizations. Intraclass correlation coefficient (ICC) was used to assess RF repeatability and reproducibility. RESULTS: Fifty-five participants (mean age, 59 ± 7 years; 36 men) were enrolled. For T1-weighted images after muscle normalization, in the simple test-retest experiment, 110 (37%) of 295 RFs showed an ICC ≥0.8: 54 (61%) of 89 first-order features (FOFs), 35 (95%) of 37 volume and shape features, and 21 (12%) of 169 texture features (TFs). When the retest was performed with different technical settings, even after muscle normalization, the number of FOF/TF with an ICC ≥0.8 declined to 58/13 for the second protocol, 29/7 for the second 1.5 T scanner, and 49/7 for the 3 T scanner, respectively. Twenty-five (28%) of the 89 FOFs and 6 (4%) of the 169 TFs from muscle-normalized T1-weighted images showed an ICC ≥0.8 throughout all repeatability and reproducibility experiments. CONCLUSIONS: In vivo, only few RFs are reproducible with different MRI sequences or different MRI scanners, even after application of a simple image normalization. Radiomics features selected by a repeatability experiment only are not necessarily suited to build radiomics models for multicenter clinical application. This study isolated a subset of RFs, which are robust to variations in MRI acquisition observed in scanners from 1 vendor, and therefore are candidates to build reproducible radiomics models for monoclonal plasma cell disorders for multicentric applications, at least when centers are equipped with scanners from this vendor.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Células Plasmáticas , Masculino , Humanos , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos
16.
Front Neurol ; 14: 1320620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38225983

RESUMEN

Background and purpose: Automated perfusion imaging can detect stroke patients with unknown time of symptom onset who are eligible for thrombolysis. However, the availability of this technique is limited. We, therefore, established the novel concept of computed tomography (CT) hypoperfusion-hypodensity mismatch, i.e., an ischemic core lesion visible on cerebral perfusion CT without visible hypodensity in the corresponding native cerebral CT. We compared both methods regarding their accuracy in identifying patients suitable for thrombolysis. Methods: In a retrospective analysis of the MissPerfeCT observational cohort study, patients were classified as suitable or not for thrombolysis based on established time window and imaging criteria. We calculated predictive values for hypoperfusion-hypodensity mismatch and automated perfusion imaging to compare accuracy in the identification of patients suitable for thrombolysis. Results: Of 247 patients, 219 (88.7%) were eligible for thrombolysis and 28 (11.3%) were not eligible for thrombolysis. Of 197 patients who were within 4.5 h of symptom onset, 190 (96.4%) were identified by hypoperfusion-hypodensity mismatch and 88 (44.7%) by automated perfusion mismatch (p < 0.001). Of 22 patients who were beyond 4.5 h of symptom onset but were eligible for thrombolysis, 5 patients (22.7%) were identified by hypoperfusion-hypodensity mismatch. Predictive values for the hypoperfusion-hypodensity mismatch vs. automated perfusion mismatch were as follows: sensitivity, 89.0% vs. 50.2%; specificity, 71.4% vs. 100.0%; positive predictive value, 96.1% vs. 100.0%; and negative predictive value, 45.5% vs. 20.4%. Conclusion: The novel method of hypoperfusion-hypodensity mismatch can identify patients suitable for thrombolysis with higher sensitivity and lower specificity than established techniques. Using this simple method might therefore increase the proportion of patients treated with thrombolysis without the use of special automated software.The MissPerfeCT study is a retrospective observational multicenter cohort study and is registered with clinicaltrials.gov (NCT04277728).

17.
Invest Radiol ; 58(4): 273-282, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256790

RESUMEN

OBJECTIVES: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly important in patients with multiple myeloma (MM). The objective of this study was to train and test an algorithm for automatic pelvic bone marrow analysis from whole-body apparent diffusion coefficient (ADC) maps in patients with MM, which automatically segments pelvic bones and subsequently extracts objective, representative ADC measurements from each bone. MATERIALS AND METHODS: In this retrospective multicentric study, 180 MRIs from 54 patients were annotated (semi)manually and used to train an nnU-Net for automatic, individual segmentation of the right hip bone, the left hip bone, and the sacral bone. The quality of the automatic segmentation was evaluated on 15 manually segmented whole-body MRIs from 3 centers using the dice score. In 3 independent test sets from 3 centers, which comprised a total of 312 whole-body MRIs, agreement between automatically extracted mean ADC values from the nnU-Net segmentation and manual ADC measurements from 2 independent radiologists was evaluated. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. In 56 patients with newly diagnosed MM who had undergone bone marrow biopsy, ADC measurements were correlated with biopsy results using Spearman correlation. RESULTS: The ADC-nnU-Net achieved automatic segmentations with mean dice scores of 0.92, 0.93, and 0.85 for the right pelvis, the left pelvis, and the sacral bone, whereas the interrater experiment gave mean dice scores of 0.86, 0.86, and 0.77, respectively. The agreement between radiologists' manual ADC measurements and automatic ADC measurements was as follows: the bias between the first reader and the automatic approach was 49 × 10 -6 mm 2 /s, 7 × 10 -6 mm 2 /s, and -58 × 10 -6 mm 2 /s, and the bias between the second reader and the automatic approach was 12 × 10 -6 mm 2 /s, 2 × 10 -6 mm 2 /s, and -66 × 10 -6 mm 2 /s for the right pelvis, the left pelvis, and the sacral bone, respectively. The bias between reader 1 and reader 2 was 40 × 10 -6 mm 2 /s, 8 × 10 -6 mm 2 /s, and 7 × 10 -6 mm 2 /s, and the mean absolute difference between manual readers was 84 × 10 -6 mm 2 /s, 65 × 10 -6 mm 2 /s, and 75 × 10 -6 mm 2 /s. Automatically extracted ADC values significantly correlated with bone marrow plasma cell infiltration ( R = 0.36, P = 0.007). CONCLUSIONS: In this study, a nnU-Net was trained that can automatically segment pelvic bone marrow from whole-body ADC maps in multicentric data sets with a quality comparable to manual segmentations. This approach allows automatic, objective bone marrow ADC measurements, which agree well with manual ADC measurements and can help to overcome interrater variability or nonrepresentative measurements. Automatically extracted ADC values significantly correlate with bone marrow plasma cell infiltration and might be of value for automatic staging, risk stratification, or therapy response assessment.


Asunto(s)
Aprendizaje Profundo , Mieloma Múltiple , Humanos , Imagen por Resonancia Magnética/métodos , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/patología , Médula Ósea/diagnóstico por imagen , Estudios Retrospectivos , Imagen de Cuerpo Entero/métodos , Imagen de Difusión por Resonancia Magnética/métodos
18.
Invest Radiol ; 58(10): 754-765, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37222527

RESUMEN

OBJECTIVES: In multiple myeloma and its precursor stages, plasma cell infiltration (PCI) and cytogenetic aberrations are important for staging, risk stratification, and response assessment. However, invasive bone marrow (BM) biopsies cannot be performed frequently and multifocally to assess the spatially heterogenous tumor tissue. Therefore, the goal of this study was to establish an automated framework to predict local BM biopsy results from magnetic resonance imaging (MRI). MATERIALS AND METHODS: This retrospective multicentric study used data from center 1 for algorithm training and internal testing, and data from center 2 to 8 for external testing. An nnU-Net was trained for automated segmentation of pelvic BM from T1-weighted whole-body MRI. Radiomics features were extracted from these segmentations, and random forest models were trained to predict PCI and the presence or absence of cytogenetic aberrations. Pearson correlation coefficient and the area under the receiver operating characteristic were used to evaluate the prediction performance for PCI and cytogenetic aberrations, respectively. RESULTS: A total of 672 MRIs from 512 patients (median age, 61 years; interquartile range, 53-67 years; 307 men) from 8 centers and 370 corresponding BM biopsies were included. The predicted PCI from the best model was significantly correlated ( P ≤ 0.01) to the actual PCI from biopsy in all internal and external test sets (internal test set: r = 0.71 [0.51, 0.83]; center 2, high-quality test set: r = 0.45 [0.12, 0.69]; center 2, other test set: r = 0.30 [0.07, 0.49]; multicenter test set: r = 0.57 [0.30, 0.76]). The areas under the receiver operating characteristic of the prediction models for the different cytogenetic aberrations ranged from 0.57 to 0.76 for the internal test set, but no model generalized well to all 3 external test sets. CONCLUSIONS: The automated image analysis framework established in this study allows for noninvasive prediction of a surrogate parameter for PCI, which is significantly correlated to the actual PCI from BM biopsy.


Asunto(s)
Aprendizaje Profundo , Mieloma Múltiple , Masculino , Humanos , Persona de Mediana Edad , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/genética , Médula Ósea/diagnóstico por imagen , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Biopsia , Aberraciones Cromosómicas
19.
Radiologie (Heidelb) ; 62(6): 504-510, 2022 Jun.
Artículo en Alemán | MEDLINE | ID: mdl-35925058

RESUMEN

BACKGROUND: Since its introduction, spectral computed tomography has become an integral part of clinical imaging with a variety of possible applications. Over time, technical innovations have considerably improved the spatial and energy resolution. The recent introduction of computed tomographs utilizing photon-counting x­ray detectors has opened up further applications, which need to be investigated regarding their clinical utility. OBJECTIVES: This article gives an overview of the development of spectral computed tomography in general and photon-counting computed tomography in particular, with a special focus on recent technical developments and their clinical applications. CONCLUSION: Very likely, photon-counting X­ray detectors will over time prevail over conventional energy-integrating detectors. Most technical problems hindering clinical use have been overcome, so that the unquestionable advantages outweigh the remaining disadvantages. Further developments especially of detector electronics, reconstruction algorithms and software-based postprocessing will further support its clinical introduction.


Asunto(s)
Fotones , Tomografía Computarizada por Rayos X , Algoritmos , Radiografía , Tomografía Computarizada por Rayos X/métodos , Rayos X
20.
Med Phys ; 49(9): 5981-5992, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35638106

RESUMEN

PURPOSE: Magnetic resonance imaging (MRI) of the lung can be used for diagnosis and monitoring of interstitial lung disease. Biophysical models of alveolar lung tissue are needed to understand the complex interplay of susceptibility, diffusion, and flow effects, and their influence on magnetic resonance (MR) spin dephasing. METHODS: In this work, we present a method for modeling the signal decay of lung tissue by utilizing a two-compartment model, which considers the different spin dephasing mechanisms in the alveolar vasculature and interstitial tissue. This allows calculating the magnetization dynamics and the MR lineshape, which can be measured noninvasively using clinical MR scanners. RESULTS: The accuracy of the method was evaluated using finite element simulations and the experimentally measured lineshapes of a healthy volunteer. In this comparison, the model performs well, indicating that the relevant spin dephasing mechanisms are correctly taken into account. CONCLUSIONS: The proposed method can be used to estimate the influence of blood flow and alveolar geometry on the MR lineshape of lung tissue.


Asunto(s)
Pulmón , Imagen por Resonancia Magnética , Difusión , Humanos , Pulmón/diagnóstico por imagen , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA