Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ESC Heart Fail ; 7(6): 4159-4171, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33034410

RESUMEN

AIMS: Diastolic dysfunction is common in cardiovascular diseases, particularly in the case of heart failure with preserved ejection fraction. The challenge is to develop adequate animal models to envision human therapies in the future. It has been hypothesized that this diastolic dysfunction is linked to alterations in the nitric oxide (• NO) pathway. To investigate this issue further, we investigated the cardiac functions of a transgenic rat model (Tgß3 ) that overexpresses the human ß3 -adrenoceptor (hß3 -AR) in the endothelium with the underlying rationale that the • NO pathway should be stimulated in the endothelium. METHODS AND RESULTS: Transgenic rats (Tgß3 ) that express hß3 -AR under the control of intercellular adhesion molecule 2 promoter were developed for a specific expression in endothelial cells. Transcriptomic analyses were performed on left ventricular tissue from 45-week-old rats. Among all altered genes, we focus on • NO synthase expression and endothelial function with arterial reactivity and evaluation of • NO and O2 •- production. Cardiac function was characterized by echocardiography, invasive haemodynamic studies, and working heart studies. Transcriptome analyses illustrate that several key genes are regulated by the hß3 -AR overexpression. Overexpression of hß3 -AR leads to a reduction of Nos3 mRNA expression (-72%; P < 0.05) associated with a decrease in protein expression (-19%; P < 0.05). Concentration-dependent vasodilation to isoproterenol was significantly reduced in Tgß3 aorta (-10%; P < 0.05), while • NO and O2 •- production was increased. In the same time, Tgß3 rats display progressively increasing diastolic dysfunction with age, as shown by an increase in the E/A filing ratio [1.15 ± 0.01 (wild type, WT) vs. 1.33 ± 0.04 (Tgß3 ); P < 0.05] and in left ventricular end-diastolic pressure [5.57 ± 1.23 mmHg (WT) vs. 11.68 ± 1.11 mmHg (Tgß3 ); P < 0.05]. In isolated working hearts, diastolic stress using increasing preload levels led to a 20% decrease in aortic flow [55.4 ± 1.9 mL/min (WT) vs. 45.8 ± 2.5 mL/min (Tgß3 ); P < 0.05]. CONCLUSIONS: The Tgß3 rat model displays the expected increase in • NO production upon ageing and develops diastolic dysfunction. These findings provide a further link between endothelial and cardiac dysfunction. This rat model should be valuable for future preclinical evaluation of candidate drugs aimed at correcting diastolic dysfunction.

2.
Life Sci ; 236: 116865, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31525428

RESUMEN

AIMS: Endothelial dysfunction is one of the earliest symptoms in septic patients and plays an important role in the cardiovascular alterations. However, the endothelial mechanisms involved in the impaired sympathetic regulation of the cardiovascular system are not clear. This study aimed to determine the role of the endocardial endothelium (EE) in the cardiac ß-adrenergic (ß-AR) remodeling at the early phase of endotoxemic shock. MAIN METHODS: Rats received either lipopolysaccharide (LPS) or saline (control) intravenously. Three hours later, ß-AR cardiac contractility was evaluated on papillary muscles with or without a functional EE. KEY FINDINGS: Isoproterenol-induced contractility was strongly increased in papillary muscles from LPS rats. A similar increase was observed with a ß1-AR stimulation, whereas ß2-AR and ß3-AR produced similar contractility in control and LPS treatments. The removal of the EE did not modify ß1-AR-induced contractility in controls, whereas it abolished the increased ß1-AR response in LPS-treated muscles. In LPS-treated papillary muscle, the increased ß1-AR-induced contractility was not modified by pretreatment with a NOS inhibitor or an endothelin receptor antagonist. Conversely, the increased ß1-AR-induced contractility was abolished by indomethacin, a non-selective cyclooxygenase (COX) inhibitor, as well as by selective inhibitors of COX1 and COX2. An early treatment with indomethacin improved the survival of LPS rat. SIGNIFICANCE: Our results suggest that the EE is involved in the increased cardiac ß1-AR contractility in the early phase of endotoxemic shock. This effect is mediated through the activation of COX1 and COX2 and suggests these may be novel putative therapeutic targets during endotoxemic shock.


Asunto(s)
Ciclooxigenasa 1/metabolismo , Endotelio Vascular/fisiopatología , Endotoxemia/fisiopatología , Proteínas de la Membrana/metabolismo , Contracción Miocárdica , Músculos Papilares/fisiopatología , Receptores Adrenérgicos beta 1/metabolismo , Animales , Modelos Animales de Enfermedad , Endotoxemia/inducido químicamente , Lipopolisacáridos/toxicidad , Masculino , Ratas , Ratas Sprague-Dawley
3.
Antioxid Redox Signal ; 22(17): 1502-14, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25836025

RESUMEN

SIGNIFICANCE: Several authors have proposed a link between altered cardiac energy substrate metabolism and reactive oxygen species (ROS) generation. A cogent evidence of this association has been found in diabetic cardiomyopathy (dCM); however, experimental findings in animal models of heart failure (HF) and in human myocardium also seem to support the coexistence of the two alterations in HF. CRITICAL ISSUES: Two important questions remain open: whether pathological changes in metabolism play an important role in enhancing oxidative stress and whether there is a common pathway linking altered substrate utilization and activation of ROS-generating enzymes, independently of the underlying cardiac pathology. In this regard, the comparison between dCM and HF is intriguing, in that these pathological conditions display very different cardiac metabolic phenotypes. RECENT ADVANCES: Our literature review on this topic indicates that a vast body of knowledge is now available documenting the relationship between the metabolism of energy substrates and ROS generation in dCM. In some cases, biochemical mechanisms have been identified. On the other hand, only a few and relatively recent studies have explored this phenomenon in HF and their conclusions are not consistent. FUTURE DIRECTIONS: Better methods of investigation, especially in vivo, will be necessary to test whether the metabolic fate of certain substrates is causally linked to ROS production. If successful, these studies will place a new emphasis on the potential clinical relevance of metabolic modulators, which might indirectly mitigate cardiac oxidative stress in dCM, HF, and, possibly, in other pathological conditions.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Redes y Vías Metabólicas , Estrés Oxidativo , Animales , Humanos , Miocardio/metabolismo , Miocardio/patología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA