Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Theor Appl Genet ; 130(7): 1491-1505, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28451771

RESUMEN

KEY MESSAGE: The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect. Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.


Asunto(s)
Resistencia a la Enfermedad/genética , Epistasis Genética , Enfermedades de las Plantas/genética , Potyviridae , Sitios de Carácter Cuantitativo , Triticum/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Ligamiento Genético , Marcadores Genéticos , Genotipo , Fenotipo , Enfermedades de las Plantas/virología , Triticum/virología
2.
BMC Evol Biol ; 14: 264, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25528060

RESUMEN

BACKGROUND: Crop diversity managed by smallholder farmers in traditional agrosystems is the outcome of historical and current processes interacting at various spatial scales, and influenced by factors such as farming practices and environmental pressures. Only recently have studies started to consider the complexity of these processes instead of simply describing diversity for breeding purposes. A first step in that aim is to add multiple references to the collection of genetic data, including the farmers' varietal taxonomy and practices and the historical background of the crop. RESULTS: On the basis of interview data collected in a previous study, we sampled 166 populations of durum wheat varieties in two traditional Moroccan agrosystems, in the Pre-Rif and Atlas Mountains regions. Using a common garden experiment, we detected a high phenotypic variability on traits indicative of taxonomical position and breeding status, namely spike shape and plant height. Populations often combined modern (short) with traditional-like (tall) statures, and classical durum squared spike shape (5 flowers/spikelet) with flat spike shape (3 flowers/ spikelet) representative of primitive domesticated tetraploid wheat (ssp. dicoccum). By contrast, the genetic diversity assessed using 14 microsatellite markers was relatively limited. When compared to the genetic diversity found in a large collection of tetraploid wheat, it corresponded to free-threshing tetraploid wheat. Within Morocco, the two studied regions differed for both genetic diversity and variety names. Within regions, neither geography nor variety names nor even breeding status constituted strong barriers to gene exchange despite a few significant patterns. CONCLUSIONS: This first assessment of morphological and genetic diversity allowed pointing out some important factors that may have influenced the structure and evolutionary dynamics of durum wheat in Morocco: the significance of variety names, the occurrence of mixtures within populations, the relative strength of seed exchange between farmers and local adaptation, as well as the fate of modern varieties once they have been introduced. Further, multidisciplinary studies at different spatial scales are needed to better understand these complex agrosystems of invaluable importance for food security.


Asunto(s)
Variación Genética , Triticum/genética , Agricultura , Cruzamiento , Flores/genética , Luz , Repeticiones de Microsatélite , Marruecos , Fenotipo , Semillas/genética , Tetraploidía , Triticum/clasificación
3.
Plant Methods ; 20(1): 103, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003455

RESUMEN

BACKGROUND: Genotyping of individuals plays a pivotal role in various biological analyses, with technology choice influenced by multiple factors including genomic constraints, number of targeted loci and individuals, cost considerations, and the ease of sample preparation and data processing. Target enrichment capture of specific polymorphic regions has emerged as a flexible and cost-effective genomic reduction method for genotyping, especially adapted to the case of very large genomes. However, this approach necessitates complex bioinformatics treatment to extract genotyping data from raw reads. Existing workflows predominantly cater to phylogenetic inference, leaving a gap in user-friendly tools for genotyping analysis based on capture methods. In response to these challenges, we have developed GeCKO (Genotyping Complexity Knocked-Out). To assess the effectiveness of combining target enrichment capture with GeCKO, we conducted a case study on durum wheat domestication history, involving sequencing, processing, and analyzing variants in four relevant durum wheat groups. RESULTS: GeCKO encompasses four distinct workflows, each designed for specific steps of genomic data processing: (i) read demultiplexing and trimming for data cleaning, (ii) read mapping to align sequences to a reference genome, (iii) variant calling to identify genetic variants, and (iv) variant filtering. Each workflow in GeCKO can be easily configured and is executable across diverse computational environments. The workflows generate comprehensive HTML reports including key summary statistics and illustrative graphs, ensuring traceable, reproducible results and facilitating straightforward quality assessment. A specific innovation within GeCKO is its 'targeted remapping' feature, specifically designed for efficient treatment of targeted enrichment capture data. This process consists of extracting reads mapped to the targeted regions, constructing a smaller sub-reference genome, and remapping the reads to this sub-reference, thereby enhancing the efficiency of subsequent steps. CONCLUSIONS: The case study results showed the expected intra-group diversity and inter-group differentiation levels, confirming the method's effectiveness for genotyping and analyzing genetic diversity in species with complex genomes. GeCKO streamlined the data processing, significantly improving computational performance and efficiency. The targeted remapping enabled straightforward SNP calling in durum wheat, a task otherwise complicated by the species' large genome size. This illustrates its potential applications in various biological research contexts.

4.
Ecol Evol ; 13(1): e9741, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36694552

RESUMEN

Lower plant resistance to herbivores following domestication has been suggested as the main cause for higher feeding damage in crops than in wild progenitors. While herbivore compensatory feeding has also been proposed as a possible mechanism for raised damage in crops with low nutritional quality, predictions regarding the effects of plant domestication on nutritional quality for herbivores remain unclear. In particular, data on primary metabolites, even major macronutrients, measured in the organs consumed by herbivores, are scarce. In this study, we used a collection of 10 accessions of wild ancestors and 10 accessions of modern progenies of Triticum turgidum to examine whether feeding damage and selectivity by nymphs of Locusta migratoria primarily depended on five leaf traits related to structural resistance or nutrient profiles. Our results unexpectedly showed that locusts favored wild ancestors over domesticated accessions and that leaf toughness and nitrogen and soluble protein contents increased with the domestication process. Furthermore, the quantitative relationship between soluble protein and digestible carbohydrates was found to poorly meet the specific requirements of the herbivore, in all wheat accessions, both wild and modern. The increase in leaf structural resistance to herbivores in domesticated tetraploid wheat accessions suggested that resource allocation trade-offs between growth and herbivory resistance may have been disrupted by domestication in the vegetative organs of this species. Since domestication did not result in a loss of nutritional quality in the leaves of the tetraploid wheat, our results rather provides evidence for a role of the content of plants in nonnutritive nitrogenous secondary compounds, possibly deterrent or toxic, at least for grasshopper herbivores.

5.
Plant Methods ; 18(1): 100, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962438

RESUMEN

BACKGROUND: As a rapid and non-destructive method, Near Infrared Spectroscopy is classically proposed to assess plant traits in many scientific fields, to observe enlarged genotype panels and to document the temporal kinetic of some biological processes. Most often, supervised models are used. The signal is calibrated thanks to reference measurements, and dedicated models are generated to predict biological traits. An alternative unsupervised approach considers the whole spectra information in order to point out various matrix changes. Although more generic, and faster to implement, as it does not require a reference data set, this latter approach is rarely used to document biological processes, and does requires more information of the process. METHODS: In our work, an unsupervised model was used to document the flag leaf senescence of durum wheat (Triticum turgidum durum). Leaf spectra changes were observed using Moving Window Principal Component Analysis (MWPCA). The dates related to earlier and later spectra changes were compared to two key points on the senescence time course: senescence onset (T0) and the end of the leaf span (T1) derived from a supervised strategy. RESULTS: For almost all leaves and whatever the signal pre-treatments and window size considered, the MWPCA found significant spectral changes. The latter was highly correlated with T1 (0.59 ≤ r ≤ 0.86) whereas the correlations between the first significant spectrum changes and T0 were lower (0.09 ≤ r ≤ 0.56). These different relationships are discussed below since they define the potential as well as the limitations of MWPCA to model biological processes. CONCLUSION: Overall, our study demonstrates that the information contained in the spectra can be used when applying an unsupervised method, here the MWPCA, to characterize a complex biological phenomenon such leaf senescence. It also means that using whole spectra may be relevant in agriculture and plant biology.

6.
Front Plant Sci ; 13: 853601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401645

RESUMEN

Roots are essential for water and nutrient uptake but are rarely the direct target of breeding efforts. To characterize the genetic variability of wheat root architecture, the root and shoot traits of 200 durum and 715 bread wheat varieties were measured at a young stage on a high-throughput phenotyping platform. Heritability of platform traits ranged from 0.40 for root biomass in durum wheat to 0.82 for the number of tillers. Field phenotyping data for yield components and SNP genotyping were already available for all the genotypes. Taking differences in earliness into account, several significant correlations between root traits and field agronomic performances were found, suggesting that plants investing more resources in roots in some stressed environments favored water and nutrient uptake, with improved wheat yield. We identified 100 quantitative trait locus (QTLs) of root traits in the bread wheat panels and 34 in the durum wheat panel. Most colocalized with QTLs of traits measured in field conditions, including yield components and earliness for bread wheat, but only in a few environments. Stress and climatic indicators explained the differential effect of some platform QTLs on yield, which was positive, null, or negative depending on the environmental conditions. Modern breeding has led to deeper rooting but fewer seminal roots in bread wheat. The number of tillers has been increased in bread wheat, but decreased in durum wheat, and while the root-shoot ratio for bread wheat has remained stable, for durum wheat it has been increased. Breeding for root traits or designing ideotypes might help to maintain current yield while adapting to specific drought scenarios.

7.
Plant Methods ; 18(1): 108, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064570

RESUMEN

BACKGROUND: Phenomic prediction has been defined as an alternative to genomic prediction by using spectra instead of molecular markers. A reflectance spectrum provides information on the biochemical composition within a tissue, itself being under genetic determinism. Thus, a relationship matrix built from spectra could potentially capture genetic signal. This new methodology has been mainly applied in several annual crop species but little is known so far about its interest in perennial species. Besides, phenomic prediction has only been tested for a restricted set of traits, mainly related to yield or phenology. This study aims at applying phenomic prediction for the first time in grapevine, using spectra collected on two tissues and over two consecutive years, on two populations and for 15 traits, related to berry composition, phenology, morphological and vigour. A major novelty of this study was to collect spectra and phenotypes several years apart from each other. First, we characterized the genetic signal in spectra and under which condition it could be maximized, then phenomic predictive ability was compared to genomic predictive ability. RESULTS: For the first time, we showed that the similarity between spectra and genomic relationship matrices was stable across tissues or years, but variable across populations, with co-inertia around 0.3 and 0.6 for diversity panel and half-diallel populations, respectively. Applying a mixed model on spectra data increased phenomic predictive ability, while using spectra collected on wood or leaves from one year or another had less impact. Differences between populations were also observed for predictive ability of phenomic prediction, with an average of 0.27 for the diversity panel and 0.35 for the half-diallel. For both populations, a significant positive correlation was found across traits between predictive ability of genomic and phenomic predictions. CONCLUSION: NIRS is a new low-cost alternative to genotyping for predicting complex traits in perennial species such as grapevine. Having spectra and phenotypes from different years allowed us to exclude genotype-by-environment interactions and confirms that phenomic prediction can rely only on genetics.

8.
Sci Rep ; 10(1): 12234, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699344

RESUMEN

Despite the large morphological and physiological changes that plants have undergone through domestication, little is known about their impact on their microbiome. Here we characterized rhizospheric bacterial and fungal communities as well as the abundance of N-cycling microbial guilds across thirty-nine accessions of tetraploid wheat, Triticum turgidum, from four domestication groups ranging from the wild subspecies to the semi dwarf elite cultivars. We identified several microbial phylotypes displaying significant variation in their relative abundance depending on the wheat domestication group with a stronger impact of domestication on fungi. The relative abundance of potential fungal plant pathogens belonging to the Sordariomycetes class decreased in domesticated compared to wild emmer while the opposite was found for members of the Glomeromycetes, which are obligate plant symbionts. The depletion of nitrifiers and of arbuscular mycorrhizal fungi in elite wheat cultivars compared to primitive domesticated forms suggests that the Green Revolution has decreased the coupling between plant and rhizosphere microbes that are potentially important for plant nutrient availability. Both plant diameter and fine root percentage exhibited the highest number of associations with microbial taxa, highlighting their putative role in shaping the rhizosphere microbiota during domestication. Aside from domestication, significant variation of bacterial and fungal community composition was found among accessions within each domestication group. In particular, the relative abundances of Ophiostomataceae and of Rhizobiales were strongly dependent on the host accession, with heritability estimates of ~ 27% and ~ 25%, indicating that there might be room for genetic improvement via introgression of ancestral plant rhizosphere-beneficial microbe associations.


Asunto(s)
Bacterias/genética , Domesticación , Microbiota/genética , Micobioma/genética , Micorrizas/genética , Raíces de Plantas/microbiología , Triticum/microbiología , Genotipo , Fenotipo , Rizosfera , Microbiología del Suelo , Tetraploidía
9.
Evol Appl ; 12(9): 1837-1849, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31548861

RESUMEN

Variety mixtures, the cultivation of different genotypes within a field, have been proposed as a way to increase within-crop diversity, allowing the development of more sustainable agricultural systems with reduced environmental costs. Although mixtures have often been shown to over-yield the average of component varieties in pure stands, decreased yields in mixtures have also been documented. Kin selection may explain such pattern, whenever plants direct helping behaviors preferentially toward relatives and thus experience stronger competition when grown with less related neighbors, lowering seed production of mixtures. Using varieties of durum wheat originating from traditional Moroccan agrosystems, we designed a greenhouse experiment to address whether plants reduced competition for light by limiting stem elongation when growing with kin and whether such phenotypic response resulted in higher yield of kin groups. Seeds were sown in groups of siblings and nonkin, each group containing a focal plant surrounded by four neighbors. At the group level, mean plant height and yield did not depend upon relatedness among competing plants. At the individual level, plant height was not affected by genetic relatedness to neighbors, after accounting for direct genetic effects that might induce among-genotype differences in the ability to capture resources that do not depend on relatedness. Moreover, in contrast to our predictions, shorter plants had lower inclusive fitness. Phenotypic plasticity in height was very limited in response to neighbor genotypes. This suggests that human selection in crops may have attenuated shade-avoidance responses to competition for light. Future research on preferential helping to relatives in crops might thus target social traits that drive competition for other resources than light. Overall, our study illustrates the relevance of tackling agricultural issues from an evolutionary standpoint and calls for extending such approaches to a larger set of crop species.

10.
PLoS One ; 11(5): e0154609, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27171472

RESUMEN

Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays.


Asunto(s)
Alelos , Mapeo Cromosómico , Técnicas de Genotipaje/métodos , Análisis de Secuencia de ADN/métodos , Triticum/genética , Mapeo Contig , Polimorfismo Genético , Polimorfismo de Nucleótido Simple/genética
11.
J Ethnobiol Ethnomed ; 10: 58, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25027694

RESUMEN

BACKGROUND: Traditional agrosystems are the places were crop species have evolved and continue to evolve under a combination of human and environmental pressures. A better knowledge of the mechanisms underlying the dynamics of crop diversity in these agrosystems is crucial to sustain food security and farmers' self-reliance. It requires as a first step, anchoring a description of the available diversity in its geographical, environmental, cultural and socio-economic context. METHODS: We conducted interviews with farmers cultivating durum wheat in two contrasted traditional agrosystems of Morocco in the Pre-Rif (163 farmers) and in the oases of the Atlas Mountains (110 farmers). We documented the varietal diversity of durum wheat, the main characteristics of the farms, the farming and seed management practices applied to durum wheat, and the farmers' perception of their varieties. RESULTS: As expected in traditional agrosystems, farmers largely practiced diversified subsistence agriculture on small plots and relied on on-farm seed production or informal seed exchange networks. Heterogeneity nevertheless prevailed on many variables, especially on the modernization of practices in the Pre-Rif region. Fourteen (resp. 11) traditional and 5 (resp. 3) modern varieties were identified in the Pre-Rif region (resp. in the Atlas Mountains). The majority of farmers grew a single variety, and most traditional varieties were distributed in restricted geographical areas. At the farm level, more than half of the varieties were renewed in the last decade in the Pre-Rif, a more rapid renewal than in the Atlas Mountain. Modern varieties were more prevalent in the Pre-Rif region and were integrated in the traditional practices of seed production, selection and exchange. They were clearly distinguished by the farmers from the landraces, the last ones being appreciated for their quality traits. CONCLUSIONS: The surveyed traditional agrosystems constitute open, dynamic and heterogeneous entities. We suggest that competing factors could favour or limit the cultivation of improved varieties and the erosion of original durum wheat diversity. This first description opens the way to focused further investigations, including complementing variety names with cultural, genetic and phenotypic information and unravelling the multidimensional factors and consequences of modern variety adoption.


Asunto(s)
Agricultura , Ecosistema , Triticum , Productos Agrícolas , Humanos , Marruecos , Percepción , Semillas
12.
Theor Appl Genet ; 109(8): 1632-40, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15372155

RESUMEN

Increasing attention is being paid to environment characterisation as a means of identifying the environmental factors determining grain protein content (GPC) in durum wheat. New insights in crop physiology and agronomy have led to the development of crop simulation models. Those models can reconstruct plant development for past cropping seasons. One major advantage of these models is that they can also indicate the intensity of limiting factors affecting plants during particular developmental stages. The main environmental factors determining GPC in durum wheat can be investigated by introducing the intensity of limiting factors into genotype x environment (GxE) models. In our case, limiting factors corresponding to water deficit and nitrogen availability were calculated for the development period between booting and heading. These variables were then introduced into a clustering model. This model is an extension of factorial regression applied to discrete environment and genotypic variables. This procedure effectively described the environment main effect: around 30.9% of the sum of squares of the environment main effect was accounted for, using less than 33% of the degrees of freedom. It also partially accounted for GxE interaction. Our methodology, coupling the use of crop simulation and GxE analysis models, is of potential value for improving our understanding of the main development stages and identification of environmental limiting factors for the development of GPC.


Asunto(s)
Productos Agrícolas/química , Ambiente , Modelos Biológicos , Proteínas de Plantas/metabolismo , Triticum/química , Agricultura/métodos , Análisis de Varianza , Clima , Simulación por Computador , Genotipo , Nitrógeno , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA