RESUMEN
BACKGROUND: Blood neurofilament light chain (NfL) is increasingly considered as a key trial biomarker in genetic frontotemporal dementia (gFTD). We aimed to facilitate the use of NfL in gFTD multicentre trials by testing its (1) reliability across labs; (2) reliability to stratify gFTD disease stages; (3) comparability between blood matrices and (4) stability across recruiting sites. METHODS: Comparative analysis of blood NfL levels in a large gFTD cohort (GENFI) for (1)-(4), with n=344 samples (n=148 presymptomatic, n=11 converter, n=46 symptomatic subjects, with mutations in C9orf72, GRN or MAPT; and n=139 within-family controls), each measured in three different international labs by Simoa HD-1 analyzer. RESULTS: NfL revealed an excellent consistency (intraclass correlation coefficient (ICC) 0.964) and high reliability across the three labs (maximal bias (pg/mL) in Bland-Altman analysis: 1.12±1.20). High concordance of NfL across laboratories was moreover reflected by high areas under the curve for discriminating conversion stage against the (non-converting) presymptomatic stage across all three labs. Serum and plasma NfL were largely comparable (ICC 0.967). The robustness of NfL across 13 recruiting sites was demonstrated by a linear mixed effect model. CONCLUSIONS: Our results underline the suitability of blood NfL in gFTD multicentre trials, including cross-lab reliable stratification of the highly trial-relevant conversion stage, matrix comparability and cross-site robustness.
Asunto(s)
Biomarcadores , Demencia Frontotemporal , Proteínas de Neurofilamentos , Humanos , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/sangre , Reproducibilidad de los Resultados , Masculino , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Proteínas tau/genética , Proteínas tau/sangre , Proteína C9orf72/genética , Progranulinas/genética , Anciano , Mutación , Estudios de CohortesRESUMEN
BACKGROUND: Dysfunction of the locus coeruleus-noradrenergic system occurs early in Alzheimer's disease, contributing to cognitive and neuropsychiatric symptoms in some patients. This system offers a potential therapeutic target, although noradrenergic treatments are not currently used in clinical practice. OBJECTIVE: To assess the efficacy of drugs with principally noradrenergic action in improving cognitive and neuropsychiatric symptoms in Alzheimer's disease. METHODS: The MEDLINE, Embase and ClinicalTrials.gov databases were searched from 1980 to December 2021. We generated pooled estimates using random effects meta-analyses. RESULTS: We included 19 randomised controlled trials (1811 patients), of which six were judged as 'good' quality, seven as 'fair' and six 'poor'. Meta-analysis of 10 of these studies (1300 patients) showed a significant small positive effect of noradrenergic drugs on global cognition, measured using the Mini-Mental State Examination or Alzheimer's Disease Assessment Scale-Cognitive Subscale (standardised mean difference (SMD): 0.14, 95% CI: 0.03 to 0.25, p=0.01; I2=0%). No significant effect was seen on measures of attention (SMD: 0.01, 95% CI: -0.17 to 0.19, p=0.91; I2=0). The apathy meta-analysis included eight trials (425 patients) and detected a large positive effect of noradrenergic drugs (SMD: 0.45, 95% CI: 0.16 to 0.73, p=0.002; I2=58%). This positive effect was still present following removal of outliers to account for heterogeneity across studies. DISCUSSION: Repurposing of established noradrenergic drugs is most likely to offer effective treatment in Alzheimer's disease for general cognition and apathy. However, several factors should be considered before designing future clinical trials. These include targeting of appropriate patient subgroups and understanding the dose effects of individual drugs and their interactions with other treatments to minimise risks and maximise therapeutic effects. PROSPERO REGISTERATION NUMBER: CRD42021277500.
RESUMEN
OBJECTIVES: This longitudinal study compared emerging plasma biomarkers for neurodegenerative disease between controls, patients with Alzheimer's disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). METHODS: Plasma phosphorylated tau at threonine-181 (p-tau181), amyloid beta (Αß)42, Aß40, neurofilament light (NfL) and glial fibrillar acidic protein (GFAP) were measured using highly sensitive single molecule immunoassays (Simoa) in a multicentre cohort of 300 participants (controls=73, amyloid positive mild cognitive impairment (MCI+) and AD dementia=63, LBD=117, FTD=28, PSP=19). LBD participants had known positron emission tomography (PET)-Aß status. RESULTS: P-tau181 was elevated in MCI+AD compared with all other groups. Aß42/40 was lower in MCI+AD compared with controls and FTD. NfL was elevated in all dementias compared with controls while GFAP was elevated in MCI+AD and LBD. Plasma biomarkers could classify between MCI+AD and controls, FTD and PSP with high accuracy but showed limited ability in differentiating MCI+AD from LBD. No differences were detected in the levels of plasma biomarkers when comparing PET-Aß positive and negative LBD. P-tau181, NfL and GFAP were associated with baseline and longitudinal cognitive decline in a disease specific pattern. CONCLUSION: This large study shows the role of plasma biomarkers in differentiating patients with different dementias, and at monitoring longitudinal change. We confirm that p-tau181 is elevated in MCI+AD, versus controls, FTD and PSP, but is less accurate in the classification between MCI+AD and LBD or detecting amyloid brain pathology in LBD. NfL was elevated in all dementia groups, while GFAP was elevated in MCI+AD and LBD.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Demencia Frontotemporal , Enfermedad por Cuerpos de Lewy , Enfermedades Neurodegenerativas , Parálisis Supranuclear Progresiva , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Biomarcadores , Disfunción Cognitiva/diagnóstico , Demencia Frontotemporal/diagnóstico , Proteína Ácida Fibrilar de la Glía , Humanos , Enfermedad por Cuerpos de Lewy/diagnóstico , Estudios Longitudinales , Parálisis Supranuclear Progresiva/diagnóstico , Proteínas tauRESUMEN
Advances in neuroimaging are ideally placed to facilitate the translation from progress made in cellular genetics and molecular biology of neurodegeneration into improved diagnosis, prevention and treatment of dementia. New positron emission tomography (PET) ligands allow one to quantify neuropathology, inflammation and metabolism in vivo safely and reliably, to examine mechanisms of human disease and support clinical trials. Developments in MRI-based imaging and neurophysiology provide complementary quantitative assays of brain function and connectivity, for the direct testing of hypotheses of human pathophysiology. Advances in MRI are also improving the quantitative imaging of vascular risk and comorbidities. In combination with large datasets, open data and artificial intelligence analysis methods, new informatics-based approaches are set to enable accurate single-subject inferences for diagnosis, prediction and treatment that have the potential to deliver precision medicine for dementia. Here, we show, through the use of critically appraised worked examples, how neuroimaging can bridge the gaps between molecular biology, neural circuits and the dynamics of the core systems that underpin complex behaviours. We look beyond traditional structural imaging used routinely in clinical care, to include ultrahigh field MRI (7T MRI), magnetoencephalography and PET with novel ligands. We illustrate their potential as safe, robust and sufficiently scalable to be viable for experimental medicine studies and clinical trials. They are especially informative when combined in multimodal studies, with model-based analyses to test precisely defined hypotheses.
Asunto(s)
Demencia/diagnóstico por imagen , Demencia/terapia , Neuroimagen , Investigación Biomédica Traslacional , Demencia/etiología , HumanosRESUMEN
INTRODUCTION: In addition to tau pathology and neuronal loss, neuroinflammation occurs in progressive supranuclear palsy (PSP). However, the prognostic value of the in vivo imaging markers for these processes in PSP remains unclear. We test the primary hypothesis that baseline in vivo imaging assessment of neuroinflammation in subcortical regions predicts clinical progression in patients with PSP. METHODS: Seventeen patients with PSP-Richardson's syndrome underwent a baseline multimodal imaging assessment, including [11C]PK11195 positron emission tomography (PET) to index microglial activation, [18F]AV-1451 PET for tau pathology and structural MRI. Disease severity was measured at baseline and serially up to 4 years with the Progressive Supranuclear Palsy Rating Scale (PSPRS) (average interval of 5 months). Regional grey-matter volumes and PET ligand binding potentials were summarised by three principal component analyses (PCAs). A linear mixed-effects model was applied to the longitudinal PSPRS scores. Single-modality imaging predictors were regressed against the individuals' estimated rate of progression to identify the prognostic value of baseline imaging markers. RESULTS: PCA components reflecting neuroinflammation and tau burden in the brainstem and cerebellum correlated with the subsequent annual rate of change in the PSPRS. PCA-derived PET markers of neuroinflammation and tau pathology correlated with regional brain volume in the same regions. However, MRI volumes alone did not predict the rate of clinical progression. CONCLUSIONS: Molecular imaging with PET for microglial activation and tau pathology can predict clinical progression in PSP. These data encourage the evaluation of immunomodulatory approaches to disease-modifying therapies in PSP and the potential for PET to stratify patients in early phase clinical trials.
Asunto(s)
Encéfalo/patología , Encefalitis/patología , Parálisis Supranuclear Progresiva/patología , Anciano , Encéfalo/diagnóstico por imagen , Progresión de la Enfermedad , Encefalitis/diagnóstico por imagen , Encefalitis/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Pronóstico , Índice de Severidad de la Enfermedad , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/metabolismo , Proteínas tau/metabolismoRESUMEN
INTRODUCTION: We report in vivo patterns of neuroinflammation and abnormal protein aggregation in seven cases of familial frontotemporal dementia (FTD) with mutations in MAPT, GRN and C9orf72 genes. METHODS: Using positron emission tomography (PET), we explored the association of the distribution of activated microglia, as measured by the radioligand [11C]PK11195, and the regional distribution of tau or TDP-43 pathology, indexed using the radioligand [18F]AV-1451. The familial FTD PET data were compared with healthy controls. RESULTS: Patients with familial FTD across all mutation groups showed increased [11C]PK11195 binding predominantly in frontotemporal regions, with additional regions showing abnormalities in individuals. Patients with MAPT mutations had a consistent distribution of [18F]AV-1451 binding across the brain, with heterogeneous distributions among carriers of GRN and C9orf72 mutations. DISCUSSION: This case series suggests that neuroinflammation is part of the pathophysiology of familial FTD, warranting further consideration of immunomodulatory therapies for disease modification and prevention.
Asunto(s)
Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/patología , Anciano , Proteína C9orf72/genética , Femenino , Demencia Frontotemporal/genética , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Progranulinas/genética , Proteínas tau/genéticaRESUMEN
INTRODUCTION: Structural brain imaging is paramount for the diagnosis of behavioural variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis. METHODS: A total of 515 subjects from two different bvFTD cohorts (training and independent validation cohorts) were used to perform voxel-wise morphometric analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from deformation-based morphometry differences in isolation and together with semantic fluency. Tenfold cross validation was used to assess the performance of the classifier within the training cohort. A second held-out cohort of genetically confirmed bvFTD cases was used for additional validation. RESULTS: Average 10-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In the separate validation cohort of definite bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added semantic fluency scores. CONCLUSION: Our results show that structural MRI and semantic fluency can accurately predict bvFTD at the individual subject level within a completely independent validation cohort coming from a different and independent database.
RESUMEN
OBJECTIVES: The clinical heterogeneity of frontotemporal dementia (FTD) complicates identification of biomarkers for clinical trials that may be sensitive during the prediagnostic stage. It is not known whether cognitive or behavioural changes during the preclinical period are predictive of genetic status or conversion to clinical FTD. The first objective was to evaluate the most frequent initial symptoms in patients with genetic FTD. The second objective was to evaluate whether preclinical mutation carriers demonstrate unique FTD-related symptoms relative to familial mutation non-carriers. METHODS: The current study used data from the Genetic Frontotemporal Dementia Initiative multicentre cohort study collected between 2012 and 2018. Participants included symptomatic carriers (n=185) of a pathogenic mutation in chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN) or microtubule-associated protein tau (MAPT) and their first-degree biological family members (n=588). Symptom endorsement was documented using informant and clinician-rated scales. RESULTS: The most frequently endorsed initial symptoms among symptomatic patients were apathy (23%), disinhibition (18%), memory impairments (12%), decreased fluency (8%) and impaired articulation (5%). Predominant first symptoms were usually discordant between family members. Relative to biologically related non-carriers, preclinical MAPT carriers endorsed worse mood and sleep symptoms, and C9orf72 carriers endorsed marginally greater abnormal behaviours. Preclinical GRN carriers endorsed less mood symptoms compared with non-carriers, and worse everyday skills. CONCLUSION: Preclinical mutation carriers exhibited neuropsychiatric symptoms compared with non-carriers that may be considered as future clinical trial outcomes. Given the heterogeneity in symptoms, the detection of clinical transition to symptomatic FTD may be best captured by composite indices integrating the most common initial symptoms for each genetic group.
Asunto(s)
Proteína C9orf72/genética , Demencia Frontotemporal/diagnóstico , Síntomas Prodrómicos , Progranulinas/genética , Proteínas tau/genética , Adulto , Femenino , Demencia Frontotemporal/genética , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , MutaciónRESUMEN
Parkinson's disease causes a characteristic combination of motor symptoms due to progressive neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta. The core impairment of dopaminergic neurotransmission has motivated the use of functional magnetic resonance imaging (fMRI) in patients with Parkinson's disease to elucidate the role of dopamine in motor control and cognition in humans. Here we review the main insights from functional brain imaging in Parkinson's disease. Task-related fMRI revealed many disease-related alterations in brain activation patterns. However, the interpretation of these findings is complicated by the fact that task-dependent activity is influenced by complex interactions between the amount of dopaminergic neurodegeneration in the task-relevant nuclei, the state of medication, genetic factors and performance. Despite these ambiguities, fMRI studies in Parkinson's disease demonstrated a central role of dopamine in the generation of movement vigour (bradykinesia) and the control of excessive movements (dyskinesia), involving changes of both activity and connectivity of the putamen, premotor and motor regions, and right inferior frontal gyrus (rIFG). The fMRI studies addressing cognitive flexibility provided convergent evidence for a non-linear, U-shaped, relationship between dopamine levels and performance. The amount of neurodegeneration in the task-relevant dopaminergic nuclei and pharmacological dopamine replacement can therefore move performance either away or towards the task-specific optimum. Dopamine levels also strongly affect processing of reward and punishment for optimal learning. However, further studies are needed for a detailed understanding of the mechanisms underlying these effects.