Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Biol Evol ; 39(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36472530

RESUMEN

The recurrent evolution of resistance to cardiotonic steroids (CTS) across diverse animals most frequently involves convergent amino acid substitutions in the H1-H2 extracellular loop of Na+,K+-ATPase (NKA). Previous work revealed that hystricognath rodents (e.g., chinchilla) and pterocliform birds (sandgrouse) have convergently evolved amino acid insertions in the H1-H2 loop, but their functional significance was not known. Using protein engineering, we show that these insertions have distinct effects on CTS resistance in homologs of each of the two species that strongly depend on intramolecular interactions with other residues. Removing the insertion in the chinchilla NKA unexpectedly increases CTS resistance and decreases NKA activity. In the sandgrouse NKA, the amino acid insertion and substitution Q111R both contribute to an augmented CTS resistance without compromising ATPase activity levels. Molecular docking simulations provide additional insight into the biophysical mechanisms responsible for the context-specific mutational effects on CTS insensitivity of the enzyme. Our results highlight the diversity of genetic substrates that underlie CTS insensitivity in vertebrate NKA and reveal how amino acid insertions can alter the phenotypic effects of point mutations at key sites in the same protein domain.


Asunto(s)
Glicósidos Cardíacos , ATPasa Intercambiadora de Sodio-Potasio , Animales , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Aminoácidos/genética , Simulación del Acoplamiento Molecular , Chinchilla/metabolismo , Glicósidos Cardíacos/química , Glicósidos Cardíacos/farmacología , Vertebrados/genética , Vertebrados/metabolismo
2.
Proc Biol Sci ; 290(1991): 20222068, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36651049

RESUMEN

In a variety of aposematic species, the conspicuousness of an individual's warning signal and the quantity of its chemical defence are positively correlated. This apparent honest signalling is predicted by resource competition models which assume that the production and maintenance of aposematic defences compete for access to antioxidant molecules that have dual functions as pigments and in protecting against oxidative damage. To test for such trade-offs, we raised monarch butterflies (Danaus plexippus) on different species of their milkweed host plants (Apocynaceae) that vary in quantities of cardenolides to test whether (i) the sequestration of cardenolides as a secondary defence is associated with costs in the form of oxidative lipid damage and reduced antioxidant defences; and (ii) lower oxidative state is associated with a reduced capacity to produce aposematic displays. In male monarchs conspicuousness was explained by an interaction between oxidative damage and sequestration: males with high levels of oxidative damage became less conspicuous with increased sequestration of cardenolides, whereas those with low oxidative damage became more conspicuous with increased levels of cardenolides. There was no significant effect of oxidative damage or concentration of sequestered cardenolides on female conspicuousness. Our results demonstrate a physiological linkage between the production of coloration and oxidative state, and differential costs of sequestration and signalling in monarch butterflies.


Asunto(s)
Asclepias , Mariposas Diurnas , Toxinas Biológicas , Animales , Masculino , Mariposas Diurnas/fisiología , Larva/fisiología , Antioxidantes , Asclepias/química , Cardenólidos , Estrés Oxidativo
3.
Mol Ecol ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37933429

RESUMEN

A species' success during the invasion of new areas hinges on an interplay between the demographic processes common to invasions and the specific ecological context of the novel environment. Evolutionary genetic studies of invasive species can investigate how genetic bottlenecks and ecological conditions shape genetic variation in invasions, and our study pairs two invasive populations that are hypothesized to be from the same source population to compare how each population evolved during and after introduction. Invasive European starlings (Sturnus vulgaris) established populations in both Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European starling populations to determine how demographic processes interact with rapid evolution to generate similar genetic patterns in these recent and replicated invasions. Demographic models indicate that both invasive populations experienced genetic bottlenecks as expected based on invasion history, and we find that specific genomic regions have differentiated even on this short evolutionary timescale. Despite genetic bottlenecks, we suggest that genetic drift alone cannot explain differentiation in at least two of these regions. The demographic boom intrinsic to many invasions as well as potential inversions may have led to high population-specific differentiation, although the patterns of genetic variation are also consistent with the hypothesis that this infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors). We use targeted sampling of replicated invasions to identify and evaluate support for multiple, interacting evolutionary mechanisms that lead to differentiation during the invasion process.

4.
J Evol Biol ; 36(7): 975-991, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37363877

RESUMEN

Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such "defence portfolios" that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.


Asunto(s)
Ecología , Conducta Predatoria , Animales , Fenotipo
5.
Anim Cogn ; 26(6): 1973-1983, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37610527

RESUMEN

Many animals express unlearned colour preferences that depend on the context in which signals are encountered. These colour biases may have evolved in response to the signalling system to which they relate. For example, many aposematic animals advertise their unprofitability with red warning signals. Predators' innate biases against these warning colours have been suggested as one of the potential explanations for the initial evolution of aposematism. It is unclear, however, whether unlearned colour preferences reported in a number of species is truly an innate behaviour or whether it is based on prior experience. We tested the spontaneous colour and shape preferences of dark-hatched, unfed, and visually naive domestic chicks (Gallus gallus). In four experiments, we presented chicks with a choice between either red (a colour typically associated with warning patterns) or green (a colour associated with palatable cryptic prey), volume-matched spheres (representing a generalised fruit shape) or frogs (representing an aposematic animal's shape). Chicks innately preferred green stimuli and avoided red. Chicks also preferred the shape of a frog over a sphere when both stimuli were green. However, no preference for frogs over spheres was present when stimuli were red. Male chicks that experienced a bitter taste of quinine immediately before the preference test showed a higher preference for green frog-shaped stimuli. Our results suggest that newly hatched chicks innately integrate colour and shape cues during decision making, and that this can be augmented by other sensory experiences. Innate and experience-based behaviour could confer a fitness advantage to novel aposematic prey, and favour the initial evolution of conspicuous colouration.


Asunto(s)
Conducta Animal , Pollos , Masculino , Animales , Pollos/fisiología , Color , Conducta Animal/fisiología , Percepción de Color/fisiología , Señales (Psicología) , Anuros
6.
Molecules ; 28(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615300

RESUMEN

Cardiac glycosides are a large class of secondary metabolites found in plants. In the genus Asclepias, cardenolides in milkweed plants have an established role in plant-herbivore and predator-prey interactions, based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme. Milkweed seeds are eaten by specialist lygaeid bugs, which are the most cardenolide-tolerant insects known. These insects likely impose natural selection for the repeated derivatisation of cardenolides. A first step in investigating this hypothesis is to conduct a phytochemical profiling of the cardenolides in the seeds. Here, we report the concentrations of 10 purified cardenolides from the seeds of Asclepias curassavica. We report the structures of new compounds: 3-O-ß-allopyranosyl coroglaucigenin (1), 3-[4'-O-ß-glucopyranosyl-ß-allopyranosyl] coroglaucigenin (2), 3'-O-ß-glucopyranosyl-15-ß-hydroxycalotropin (3), and 3-O-ß-glucopyranosyl-12-ß-hydroxyl coroglaucigenin (4), as well as six previously reported cardenolides (5-10). We test the in vitro inhibition of these compounds on the sensitive porcine Na+/K+-ATPase. The least inhibitory compound was also the most abundant in the seeds-4'-O-ß-glucopyranosyl frugoside (5). Gofruside (9) was the most inhibitory. We found no direct correlation between the number of glycosides/sugar moieties in a cardenolide and its inhibitory effect. Our results enhance the literature on cardenolide diversity and concentration among tissues eaten by insects and provide an opportunity to uncover potential evolutionary relationships between tissue-specific defense expression and insect adaptations in plant-herbivore interactions.


Asunto(s)
Asclepias , Glicósidos Cardíacos , Animales , Porcinos , Asclepias/química , Cardenólidos/farmacología , Cardenólidos/química , Glicósidos Cardíacos/farmacología , Semillas/metabolismo , Plantas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
7.
J Anim Ecol ; 89(5): 1153-1164, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32077104

RESUMEN

To make adaptive foraging decisions, predators need to gather information about the profitability of prey. As well as learning from prey encounters, recent studies show that predators can learn about prey defences by observing the negative foraging experiences of conspecifics. However, predator communities are complex. While observing heterospecifics may increase learning opportunities, we know little about how social information use varies across predator species. Social transmission of avoidance among predators also has potential consequences for defended prey. Conspicuous aposematic prey are assumed to be an easy target for naïve predators, but this cost may be reduced if multiple predators learn by observing single predation events. Heterospecific information use by predators might further benefit aposematic prey, but this remains untested. Here we test conspecific and heterospecific information use across a predator community with wild-caught blue tits (Cyanistes caeruleus) and great tits (Parus major). We used video playback to manipulate social information about novel aposematic prey and then compared birds' foraging choices in 'a small-scale novel world' that contained novel palatable and aposematic prey items. We expected that blue tits would be less likely to use social information compared to great tits. However, we found that both blue tits and great tits consumed fewer aposematic prey after observing a negative foraging experience of a demonstrator. In fact, this effect was stronger in blue tits compared to great tits. Interestingly, blue tits also learned more efficiently from watching conspecifics, whereas great tits learned similarly regardless of the demonstrator species. Together, our results indicate that social transmission about novel aposematic prey occurs in multiple predator species and across species boundaries. This supports the idea that social interactions among predators can reduce attacks on aposematic prey and therefore influence selection for prey defences.


Asunto(s)
Passeriformes , Aprendizaje Social , Animales , Conducta Predatoria
9.
Proc Natl Acad Sci U S A ; 108(16): 6532-6, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21464318

RESUMEN

Predation is a fundamental process in the interaction between species, and exerts strong selection pressure. Hence, anti-predatory traits have been intensively studied. Although it has long been speculated that individuals of some species gain protection from predators by sometimes almost-uncanny resemblances to uninteresting objects in the local environment (such as twigs or stones), demonstration of antipredatory benefits to such "masquerade" have only very recently been demonstrated, and the fundamental workings of this defensive strategy remain unclear. Here we use laboratory experiments with avian predators and twig-mimicking caterpillars as masqueraders to investigate (i) the evolutionary dynamics of masquerade; and (ii) the behavioral adaptations associated with masquerade. We show that the benefit of masquerade declines as the local density of masqueraders relative to their models (twigs, in our system) increases. This occurs through two separate mechanisms: increasing model density both decreased predators' motivation to search for masqueraders, and made masqueraders more difficult to detect. We further demonstrated that masquerading organisms have evolved complex microhabitat selection strategies that allow them to best exploit the density-dependent properties of masquerade. Our results strongly suggest the existence of opportunity costs associated with masquerade. Careful evaluation of such costs will be vital to the development of a fuller understanding of both the distribution of masquerade across taxa and ecosystems, and the evolution of the life history strategies of masquerading prey.


Asunto(s)
Conducta Animal/fisiología , Aves/fisiología , Cadena Alimentaria , Insectos/fisiología , Modelos Biológicos , Animales , Evolución Biológica
10.
iScience ; 27(5): 109581, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638576

RESUMEN

How individuals balance costs and benefits of group living remains central to understanding sociality. In relation to diet, social foraging provides many advantages but also increases competition. Nevertheless, social individuals may offset increased competition by broadening their diet and consuming novel foods. Despite the expected relationships between social behavior and dietary decisions, how sociality shapes individuals' novel food consumption remains largely untested in natural populations. Here, we use wild great tits to experimentally test how sociality predicts dietary decisions. We show that individuals with more social connections have higher propensity to use novel foods compared to socially peripheral individuals, and this is unrelated to neophobia, observations, and demographic factors. These findings indicate sociable individuals may offset potential costs of competition by foraging more broadly. We discuss how social environments may drive behavioral change in natural populations, and the implications for the causes and consequences of social strategies and dietary decisions.

11.
Behav Ecol ; 35(1): arad097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550303

RESUMEN

Aposematic prey advertise their unprofitability with conspicuous warning signals that are often composed of multiple color patterns. Many species show intraspecific variation in these patterns even though selection is expected to favor invariable warning signals that enhance predator learning. However, if predators acquire avoidance to specific signal components, this might relax selection on other aposematic traits and explain variability. Here, we investigated this idea in the aposematic moth Amata nigriceps that has conspicuous black and orange coloration. The size of the orange spots in the wings is highly variable between individuals, whereas the number and width of orange abdominal stripes remains consistent. We produced artificial moths that varied in the proportion of orange in the wings or the presence of abdominal stripes. We presented these to a natural avian predator, the noisy miner (Manorina melanocephala), and recorded how different warning signal components influenced their attack decisions. When moth models had orange stripes on the abdomen, birds did not discriminate between different wing signals. However, when the stripes on the abdomen were removed, birds chose the model with smaller wing spots. In addition, we found that birds were more likely to attack moths with a smaller number of abdominal stripes. Together, our results suggest that bird predators primarily pay attention to the abdominal stripes of A. nigriceps, and this could relax selection on wing coloration. Our study highlights the importance of considering individual warning signal components if we are to understand how predation shapes selection on prey warning coloration.

12.
Nature ; 448(7149): 64-7, 2007 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-17611539

RESUMEN

In the first clear mathematical treatment of natural selection, Müller proposed that a shared warning signal (mimicry) would benefit defended prey species by sharing out the per capita mortality incurred during predator education. Although mimicry is a mainstay of adaptationist thinking, there has been repeated debate on whether there is a mutualistic or a parasitic relationship between unequally defended co-mimic species. Here we show that the relationship between unequally defended species is mutualistic. We examined this in a 'novel world' of artificial prey with wild predators (great tit, Parus major). We kept the abundance of a highly defended prey ('model') constant and increased the density of a moderately defended prey ('defended mimic') of either perfect or imperfect mimetic resemblance to the model. Both model and defended mimic showed a net benefit from a density-dependent decrease in their per capita mortality. Even when the effect of dilution through density was controlled for, defended mimics did not induce additional attacks on the model, but we found selection for accurate signal mimicry. In comparison, the addition of fully edible (batesian) mimics did increase additional attacks on the model, but as a result of dilution this resulted in no overall increase in per capita mortality. By ignoring the effects of density, current theories may have overestimated the parasitic costs imposed by less defended mimics on highly defended models.


Asunto(s)
Evolución Biológica , Passeriformes/fisiología , Conducta Predatoria , Adaptación Biológica , Animales , Reacción de Prevención , Modelos Biológicos
13.
Ecol Evol ; 13(11): e10712, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37928193

RESUMEN

Many insects, including several orthopterans, undergo dramatic changes in body coloration during ontogeny. This variation is particularly intriguing in gomphocerine grasshoppers, where the green and brown morphs appear to be genetically determined (Schielzeth & Dieker, 2020, BMC Evolutionary Biology, 20, 63; Winter et al., 2021, Heredity, 127, 66). A better understanding of how these color morphs develop during ontogeny can provide valuable insights into the evolution and ecology of such a widespread color polymorphism. Here, we focus on the color development of two green-brown polymorphic species, the club-legged grasshopper Gomphocerus sibiricus and the steppe grasshopper Chorthippus dorsatus. By following the color development of individuals from hatching to adulthood, we found that color morph differences begin to develop during the second nymphal stage, are clearly defined by the third nymphal stage, and remain stable throughout the life of an individual. Interestingly, we also observed that shed skins of late nymphal stages are identifiable by color morphs based on their yellowish coloration, rather than the green that marks green body parts. Furthermore, by assessing how these colors are perceived by different visual systems, we found that certain potential predators can chromatically discriminate between morphs, while others may not. These results suggest that the putative genes controlling color morph are active during the early stages of ontogeny, and that green color is likely composed of two components, one present in the cuticle and one not. In addition, the effectiveness of camouflage appears to vary depending on the specific predator involved.

14.
Ecol Evol ; 13(4): e9971, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37038513

RESUMEN

In some aposematic species the conspicuousness of an individual's warning signal and the concentration of its chemical defense are positively correlated. Several mechanisms have been proposed to explain this phenomenon, including resource allocation trade-offs where the same limiting resource is needed to produce both the warning signal and chemical defense. Here, the large milkweed bug (Oncopeltus fasciatus: Heteroptera, Lygaeinae) was used to test whether allocation of antioxidants, that can impart color, trade against their availability to prevent self-damage caused by toxin sequestration. We investigated if (i) the sequestration of cardenolides is associated with costs in the form of changes in oxidative state; and (ii) oxidative state can affect the capacity of individuals to produce warning signals. We reared milkweed bugs on artificial diets with increasing quantities of cardenolides and examined how this affected signal quality (brightness and chroma) across different instars. We then related the expression of warning colors to the quantity of sequestered cardenolides and indicators of oxidative state-oxidative lipid damage (malondialdehyde), and two antioxidants: total superoxide dismutase and total glutathione. Bugs that sequestered more cardenolides had significantly lower levels of the antioxidant glutathione, and bugs with less total glutathione had less luminant orange warning signals and reduced chroma of their black patches compared to bugs with more glutathione. Bugs that sequestered more cardenolides also had reduced red-green chroma of their black patches that was unrelated to oxidative state. Our results give tentative support for a physiological cost of sequestration in milkweed bugs and a mechanistic link between antioxidant availability, sequestration, and warning signals.

15.
Elife ; 122023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019274

RESUMEN

Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a 'sensory collective'; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify 'sensescapes'. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.


Asunto(s)
Ecología , Ecosistema , Animales , Conducta Animal , Ambiente , Movimiento
16.
Proc Biol Sci ; 279(1736): 2099-105, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22237908

RESUMEN

Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mortality in complex communities when the birds were inexperienced. However, in a subsequent generalization test to potential mimics of the model prey (a continuum of signal accuracy), only birds that had foraged from simple communities selected against inaccurate mimics. Therefore, accurate mimicry is more likely to evolve in simple communities even though predator avoidance learning is slower in complex communities. For mimicry to evolve, prey species must have a common predator; the effective community consists of the predator's diet. In diverse environments, the limited diets of specialist predators could create 'simple community pockets' where accurate mimicry is selected for.


Asunto(s)
Adaptación Fisiológica , Biota , Aprendizaje , Passeriformes/fisiología , Conducta Predatoria , Animales , Evolución Biológica , Modelos Biológicos
17.
Curr Biol ; 32(10): R447-R448, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35609536

RESUMEN

Hannah Rowland and colleagues introduce the peppered moth whose industrial melanism was an early evidence for evolution.


Asunto(s)
Melanosis , Mariposas Nocturnas , Animales
18.
Behav Ecol ; 33(1): 17-26, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197804

RESUMEN

Orthopteran insects are characterized by high variability in body coloration, in particular featuring a widespread green-brown color polymorphism. The mechanisms that contribute to the maintenance of this apparently balanced polymorphism are not yet understood. To investigate whether morph-dependent microhabitat choice might contribute to the continued coexistence of multiple morphs, we studied substrate choice in the meadow grasshopper Pseudochorthippus parallelus. The meadow grasshopper occurs in multiple discrete, genetically determined color morphs that range from uniform brown to uniform green. We tested whether three common morphs preferentially choose differently colored backgrounds in an experimental arena. We found that a preference for green backgrounds was most pronounced in uniform green morphs. If differential choices improve morph-specific performance in natural habitats via crypsis and/or thermoregulatory benefits, they could help to equalize fitness differences among color morphs and potentially produce frequency-dependent microhabitat competition, though difference appear too small to serve as the only explanation. We also measured the reflectance of the grasshoppers and backgrounds and used visual modeling to quantify the detectability of the different morphs to a range of potential predators. Multiple potential predators, including birds and spiders, are predicted to distinguish between morphs chromatically, while other species, possibly including grasshoppers themselves, will perceive only differences in brightness. Our study provides the first evidence that morph-specific microhabitat choice might be relevant to the maintenance of the green-brown polymorphisms in grasshoppers and shows that visual distinctness of color morphs varies between perceivers.

19.
R Soc Open Sci ; 9(9): 220363, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36133149

RESUMEN

Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.

20.
Front Physiol ; 13: 897931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694389

RESUMEN

In chickens, the sense of taste plays an important role in detecting nutrients and choosing feed. The molecular mechanisms underlying the taste-sensing system of chickens are well studied, but the neural mechanisms underlying taste reactivity have received less attention. Here we report the short-term taste behaviour of chickens towards umami and bitter (quinine) taste solutions and the associated neural activity in the nucleus taeniae of the amygdala, nucleus accumbens and lateral septum. We found that chickens had more contact with and drank greater volumes of umami than bitter or a water control, and that chicks displayed increased head shaking in response to bitter compared to the other tastes. We found that there was a higher neural activity, measured as c-Fos activation, in response to umami taste in the right hemisphere of the nucleus taeniae of the amygdala. In the left hemisphere, there was a higher c-Fos activation of the nucleus taeniae of the amygdala in response to bitter than in the right hemisphere. Our findings provide clear evidence that chickens respond differently to umami and bitter tastes, that there is a lateralised response to tastes at the neural level, and reveals a new function of the avian nucleus taeniae of the amygdala as a region processing reward information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA