Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Small ; 20(27): e2303706, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38353067

RESUMEN

Smart windows that can passively regulate incident solar radiation by dynamically modulating optical transmittance have attracted increasing scientific interest due to their potential economic and environmental savings. However, challenges remain in the global adoption of such systems, given the extreme variability in climatic and economic conditions across different geographical locations. Aiming these issues, a methylcellulose (MC) salt system is synthesized with high tunability for intrinsic optical transmittance (89.3%), which can be applied globally to various locations. Specifically, the MC window exhibits superior heat shielding potential below transition temperatures, becoming opaque at temperatures above the Lower Critical Solution Temperature and reducing the solar heat gain by 55%. This optical tunability is attributable to the particle size change triggered by the temperature-induced reversible coil-to-globular transition. This leads to effective refractive index and scattering modulation, making them prospective solutions for light management systems, an application ahead of intelligent fenestration systems. During the field tests, MC-based windows demonstrated a 9 °C temperature decrease compared to double-pane windows on sunny days and a 5 °C increase during winters, with simulations predicting an 11% energy savings. The ubiquitous availability of materials, low cost, and ease-of-manufacturing will provide technological equity and foster the ambition toward net-zero buildings.

2.
Nano Lett ; 23(21): 10044-10050, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37889143

RESUMEN

We show that engineering phonon scattering, such as through isotope enrichment and temperature modulation, offers the potential to achieve unconventional radiative heat transfer between two boron arsenide bulks at the nanoscale, which holds promise in applications for nonlinear thermal circuit components. A heat flux regulator is proposed, where the temperature window for stabilized heat flux exhibits a wide tunability through phonon scattering engineering. Additionally, we propose several other nonlinear thermal radiative devices, including a negative differential thermal conductance device, a temperature regulator, and a thermal diode, all benefiting from the design space enabled by isotope and temperature engineering of the phonon linewidth. Our work highlights the capability of temperature and isotope engineering in designing and optimizing nonlinear radiative thermal devices and demonstrates the potential of phonon engineering in thermal radiative transport.

3.
Nano Lett ; 22(7): 2618-2626, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35364813

RESUMEN

Atmospheric water harvesting (AWH) has received tremendous interest because of population growth, limited freshwater resources, and water pollution. However, key challenges remain in developing efficient, flexible, and lightweight AWH materials with scalability. Here, we demonstrated a radiative cooling fabric for AWH via its hierarchically structured cellulose network and hybrid sorption-dewing mechanisms. With 8.3% solar absorption and ∼0.9 infrared (IR) emissivity, the material can drop up to 7.5 °C below ambient temperature without energy consumption via radiative cooling. Water adsorption onto the hydrophilic functional groups of cellulose is dominated by sorption at low relative humidity (RH) and dewing at high RH. The cellulose network provides desirable mechanical properties with entangled high-aspect-ratio fibers over tens of adsorption-extraction cycles. In the field test, the cellulose sample exhibited water uptake of 1.29 kg/kg at 80% RH during the night. The profusion of radiative cooling fabric features desirable cost effectiveness and allows fast deployment into large-scale AWH applications.


Asunto(s)
Celulosa , Agua , Frío , Transición de Fase , Textiles
4.
Phys Rev Lett ; 128(4): 045901, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148139

RESUMEN

The Raman peak position and linewidth provide insight into phonon anharmonicity and electron-phonon interactions in materials. For monolayer graphene, prior first-principles calculations have yielded decreasing linewidth with increasing temperature, which is opposite to measurement results. Here, we explicitly consider four-phonon anharmonicity, phonon renormalization, and electron-phonon coupling, and find all to be important to successfully explain both the G peak frequency shift and linewidths in our suspended graphene sample over a wide temperature range. Four-phonon scattering contributes a prominent linewidth that increases with temperature, while temperature dependence from electron-phonon interactions is found to be reversed above a doping threshold (ℏω_{G}/2, with ω_{G} being the frequency of the G phonon).

5.
Phys Rev Lett ; 126(11): 115901, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33798386

RESUMEN

Extracting long-lasting performance from electronic devices and improving their reliability through effective heat management requires good thermal conductors. Taking both three- and four-phonon scattering as well as electron-phonon and isotope scattering into account, we predict that semimetallic θ-phase tantalum nitride (θ-TaN) has an ultrahigh thermal conductivity (κ), of 995 and 820 W m^{-1} K^{-1} at room temperature along the a and c axes, respectively. Phonons are found to be the main heat carriers, and the high κ hinges on a particular combination of factors: weak electron-phonon scattering, low isotopic mass disorder, and a large frequency gap between acoustic and optical phonon modes that, together with acoustic bunching, impedes three-phonon processes. On the other hand, four-phonon scattering is found to be significant. This study provides new insight into heat conduction in semimetallic solids and extends the search for high-κ materials into the realms of semimetals and noncubic crystal structures.

6.
Nano Lett ; 17(3): 2049-2056, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28218545

RESUMEN

The measured frequencies and intensities of different first- and second-order Raman peaks of suspended graphene are used to show that optical phonons and different acoustic phonon polarizations are driven out of local equilibrium inside a submicron laser spot. The experimental results are correlated with a first-principles-based multiple temperature model to suggest a considerably lower equivalent local temperature of the flexural phonons than those of other phonon polarizations. The finding reveals weak coupling between the flexural modes with hot electrons and optical phonons. Since the ultrahigh intrinsic thermal conductivity of graphene has been largely attributed to contributions from the flexural phonons, the observed local nonequilibrium phenomena have important implications for understanding energy dissipation processes in graphene-based electronic and optoelectronic devices, as well as in Raman measurements of thermal transport in graphene and other two-dimensional materials.

7.
Angew Chem Int Ed Engl ; 57(9): 2413-2418, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29356282

RESUMEN

Reconstructing canonical binary compounds by inserting a third agent can significantly modify their electronic and phonon structures. Therefore, it has inspired the semiconductor communities in various fields. Introducing this paradigm will potentially revolutionize thermoelectrics as well. Using a solution synthesis, Bi2 S3 was rebuilt by adding disordered Bi and weakly bonded I. These new structural motifs and the altered crystal symmetry induce prominent changes in electrical and thermal transport, resulting in a great enhancement of the figure of merit. The as-obtained nanostructured Bi13 S18 I2 is the first non-toxic, cost-efficient, and solution-processable n-type material with z T=1.0.

8.
Angew Chem Int Ed Engl ; 56(13): 3546-3551, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28079961

RESUMEN

To enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ) and excellent figure of merit (z T). Herein we report a scalable (ca. 11.0 g per batch) and low-temperature colloidal processing route for Bi2 Te2.5 Se0.5 hollow nanostructures. They are sintered into porous, bulk nanocomposites (phi 10 mm×h 10 mm) with low κ (0.48 W m-1 K-1 ) and the highest z T (1.18) among state-of-the-art Bi2 Te3-x Sex materilas. Additional benefits of the unprecedented low relative density (68-77 %) are the large demand reduction of raw materials and the improved portability. This method can be adopted to fabricate other porous phase-transition and thermoelectric chalcogenide materials and will pave the way for the implementation of hollow nanostructures in other fields.

9.
Nano Lett ; 14(2): 592-6, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24393070

RESUMEN

We show that thermal rectification (TR) in asymmetric graphene nanoribbons (GNRs) is originated from phonon confinement in the lateral dimension, which is a fundamentally new mechanism different from that in macroscopic heterojunctions. Our molecular dynamics simulations reveal that, though TR is significant in nanosized asymmetric GNRs, it diminishes at larger width. By solving the heat diffusion equation, we prove that TR is indeed absent in both the total heat transfer rate and local heat flux for bulk-size asymmetric single materials, regardless of the device geometry or the anisotropy of the thermal conductivity. For a deeper understanding of why lateral confinement is needed, we have performed phonon spectra analysis and shown that phonon lateral confinement can enable three possible mechanisms for TR: phonon spectra overlap, inseparable dependence of thermal conductivity on temperature and space, and phonon edge localization, which are essentially related to each other in a complicated manner. Under such guidance, we demonstrate that other asymmetric nanostructures, such as asymmetric nanowires, thin films, and quantum dots, of a single material are potentially high-performance thermal rectifiers.

10.
Phys Chem Chem Phys ; 16(22): 10669-78, 2014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24756576

RESUMEN

Enhancing the charge transfer process in nanocrystal sensitized solar cells is vital for the improvement of their performance. In this work we show a means of increasing photo-induced ultrafast charge transfer in successive ionic layer adsorption and reaction (SILAR) CdS-TiO2 nanocrystal heterojunctions using pulsed laser sintering of TiO2 nanocrystals. The enhanced charge transfer was attributed to both morphological and phase transformations. At sufficiently high laser fluences, volumetrically larger porous networks of the metal oxide were obtained, thus increasing the density of electron accepting states. Laser sintering also resulted in varying degrees of anatase to rutile phase transformation of the TiO2, producing thermodynamically more favorable conditions for charge transfer by increasing the change in free energy between the CdS donor and TiO2 acceptor states. Finally, we report aspects of apparent hot electron transfer as a result of the SILAR process which allows CdS to be directly adsorbed to the TiO2 surface.

11.
Nano Lett ; 13(5): 2058-63, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23586462

RESUMEN

We demonstrate the rational solution-phase synthesis of compositional modulated telluride nanowire heterostructures containing lead telluride (PbTe) and bismuth telluride (Bi2Te3). By tuning the ratio between PbTe and Bi2Te3 through adjusting the amount of critical reactants and precursors during the synthesis, the influence of composition on the thermoelectric properties of the nanowire heterostructures has been investigated in hot pressed nanocomposite pellets. Measurements of the thermoelectric properties show strongly reduced thermal conductivity that leads to an enhanced thermoelectric figure of merit (ZT) of 1.2 at 620 K.

12.
Nano Lett ; 13(11): 5006-12, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24147725

RESUMEN

Fiber-based thermoelectric materials can conform to curved surfaces to form energy harvesting devices for waste heat recovery. Here we investigate the thermal conductivity in the axial direction of glass fibers coated with lead telluride (PbTe) nanocrystals using the self-heated 3ω method particularly at low frequency. While prior 3ω measurements on wire-like structures have only been demonstrated for high thermal conductivity materials, the present work demonstrates the suitability of the 3ω method for PbTe nanocrystal coated glass fibers where the low thermal conductivity and high aspect ratio result in a significant thermal radiation effect. We simulate the experiment using a finite-difference method that corrects the thermal radiation effect and extract the thermal conductivity of glass fibers coated by PbTe nanocrystals. The simulation method for radiation correction is shown to be generally much more accurate than analytical methods. We explore the effect of nanocrystal volume fraction on thermal conductivity and obtain results in the range of 0.50-0.93 W/mK near room temperature.

13.
Nat Commun ; 15(1): 3304, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632242

RESUMEN

Defect scattering is well known to suppress thermal transport. In this study, however, we perform both molecular dynamics and Boltzmann transport equation calculations, to demonstrate that introducing defect scattering in nanoscale heating zone could surprisingly enhance thermal conductance of the system by up to 75%. We further reveal that the heating zone without defects yields directional nonequilibrium with overpopulated oblique-propagating phonons which suppress thermal transport, while introducing defects redirect phonons randomly to restore directional equilibrium, thereby enhancing thermal conductance. We demonstrate that defect scattering can enable such thermal transport enhancement in a wide range of temperatures, materials, and sizes, and offer an unconventional strategy for enhancing thermal transport via the manipulation of phonon directional nonequilibrium.

14.
Opt Express ; 21 Suppl 1: A15-22, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23389266

RESUMEN

Ultrafast time-resolved absorption spectroscopy is used to investigate exciton dynamics in CdSe nanocrystal films. The effects of morphology, quantum-dot versus quantum-rod, and preparation of nanocrystals in a thin film form are investigated. The measurements revealed longer intraband exciton relaxation in quantum-rods than in quantum-dots. The slowed relaxation in quantum-rods is due to mitigation of the Auger-relaxation mechanism from elongating the nanocrystal. In addition, the nanocrystal thin film showed long-lived confined acoustic phonons corresponding to the ellipsoidal breathing mode, contrary to others work on colloidal systems of CdSe nanocrystals.


Asunto(s)
Compuestos de Cadmio/química , Nanopartículas/química , Nanotecnología/métodos , Puntos Cuánticos , Compuestos de Selenio/química , Análisis Espectral/métodos , Tamaño de la Partícula
15.
Opt Express ; 21(19): 22053-62, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24104097

RESUMEN

We have synthesized ordered carbon nanotube (CNT) arrays in porous anodic alumina (PAA) matrix, and have characterized their total optical reflectance and bi-directional reflectance distribution function after each processing step of the microwave plasma chemical vapor deposition process (MPCVD). For a PAA sample without CNT growth, the reflectance shows an oscillating pattern with wavelength that agrees reasonably with a multilayer model. During the MPCVD process, heating the sample significantly reduces the reflectance by 30-40%, the plasma treatment reduces the reflectance by another 5-10%, and the CNT growth further reduces the reflectance by 2-3%. After an atomic layer deposition (ALD) process, the reflectance increases to the embedded CNT arrays. After etching and exposure of CNT tips, the reflectance almost returns to the original pattern with slightly higher reflectance. Bi-directional reflectance distribution function (BRDF) measurements show that the CNT-PAA surface is quite specular as indicated by a large lobe at the specular angle, while the secondary lobe can be attributed to surface roughness.

16.
ACS Appl Mater Interfaces ; 14(43): 48960-48966, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36256868

RESUMEN

Although a variety of methods to predict the effective thermal conductivity of porous foams have been proposed, the response of such materials under dynamic compressive loading has generally not been considered. Understanding the dynamic thermal behavior will widen the potential applications of porous foams and provide insights into methods of modifying material properties to achieve desired performance. Previous experimental work on the thermal conductivity of a flexible graphene composite under compression showed intriguing behavior: the cross-plane thermal conductivity remained approximately constant with increasing compression, despite the increasing mass density. In this work, we use molecular dynamics (MD) simulations and finite element analysis to study the variation in both the cross-plane and in-plane thermal conductivities by compressing isotropic graphene foams. We have found that, interestingly, the cross-plane thermal conductivity decreases with compression while the in-plane thermal conductivity increases; hence, the dynamic thermal transport of the graphene foam becomes anisotropic with a significant anisotropy ratio. Such observations cannot be explained by the conventional effective medium theory, which describes the increase of thermal conductivity to be proportional to mass density. Thus, we propose a model that can describe such anisotropic effective thermal conductivity of highly porous open-cell media during compression. The model is validated against the MD simulations as well as a larger-scale finite element simulation of an open-cell foam geometry.

17.
ACS Appl Mater Interfaces ; 13(18): 21733-21739, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33856776

RESUMEN

Radiative cooling is a passive cooling technology that offers great promises to reduce space cooling cost, combat the urban island effect, and alleviate the global warming. To achieve passive daytime radiative cooling, current state-of-the-art solutions often utilize complicated multilayer structures or a reflective metal layer, limiting their applications in many fields. Attempts have been made to achieve passive daytime radiative cooling with single-layer paints, but they often require a thick coating or show partial daytime cooling. In this work, we experimentally demonstrate remarkable full-daytime subambient cooling performance with both BaSO4 nanoparticle films and BaSO4 nanocomposite paints. BaSO4 has a high electron band gap for low solar absorptance and phonon resonance at 9 µm for high sky window emissivity. With an appropriate particle size and a broad particle size distribution, the BaSO4 nanoparticle film reaches an ultrahigh solar reflectance of 97.6% and a high sky window emissivity of 0.96. During field tests, the BaSO4 film stays more than 4.5 °C below ambient temperature or achieves an average cooling power of 117 W/m2. The BaSO4-acrylic paint is developed with a 60% volume concentration to enhance the reliability in outdoor applications, achieving a solar reflectance of 98.1% and a sky window emissivity of 0.95. Field tests indicate similar cooling performance to the BaSO4 films. Overall, our BaSO4-acrylic paint shows a standard figure of merit of 0.77, which is among the highest of radiative cooling solutions while providing great reliability, convenient paint form, ease of use, and compatibility with the commercial paint fabrication process.

18.
ACS Appl Mater Interfaces ; 13(3): 4636-4642, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33433205

RESUMEN

Bismuth telluride (Bi2Te3) and its alloys with antimony telluride (Sb2Te3) have long been considered to be the best room-temperature bulk thermoelectric (TE) materials. In recent decades, proof-of-concept demonstrations on Bi2Te3-Sb2Te3 nanostructures have shown high TE performance due to reduction in lattice thermal conductivities. Particularly, ultra-low thermal conductivities have been observed in Bi2Te3-Sb2Te3 1D superlattices, leading to thermoelectric figures of merit (ZT) as high as 2.4. In contrast, very few computational studies have been performed to provide insight into the phonon transport across these nanostructures. In this work, we use non-equilibrium molecular dynamics simulations with previously developed force fields to simulate thermal transport across Bi2Te3-Sb2Te3 interfaces and superlattices. We first calculate the thermal conductance associated with a Bi2Te3-Sb2Te3 interface across a temperature range of 200-400 K. The values are also compared with thermal conductances calculated by a modified Landauer transport formalism using phonon transmission coefficients obtained from the diffuse mismatch model. Our results show that inelastic scattering processes contribute to an increase in interfacial thermal conductance at higher temperatures. Finally, we calculate the thermal conductivities of Bi2Te3-Sb2Te3 superlattices with varying period lengths from 2 to 18 nm. A minimum thermal conductivity of 0.27 W/mK is observed at a period length of 4 nm, which is attributed to the competition between incoherent and coherent phonon transport regimes. In comparison with previous experimental measurements in the literature, our results show good agreement with respect to the range of thermal conductivity values and the period length corresponding to the minimum superlattice thermal conductivity.

19.
Nat Commun ; 12(1): 4915, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389704

RESUMEN

Thermal switches have gained intense interest recently for enabling dynamic thermal management of electronic devices and batteries that need to function at dramatically varied ambient or operating conditions. However, current approaches have limitations such as the lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here, a continuously tunable, wide-range, and fast thermal switching approach is proposed and demonstrated using compressible graphene composite foams. Large (~8x) continuous tuning of the thermal resistance is achieved from the uncompressed to the fully compressed state. Environmental chamber experiments show that our variable thermal resistor can precisely stabilize the operating temperature of a heat generating device while the ambient temperature varies continuously by ~10 °C or the heat generation rate varies by a factor of 2.7. This thermal device is promising for dynamic control of operating temperatures in battery thermal management, space conditioning, vehicle thermal comfort, and thermal energy storage.

20.
Opt Express ; 18(6): 6347-59, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20389658

RESUMEN

A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Simulación por Computador , Análisis de Elementos Finitos , Luz , Refractometría , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA