Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Life (Basel) ; 12(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362924

RESUMEN

Prostate cancer (PCa) is the most common cancer in men, and this has been mainly noticed in Western and Asian countries. The aggregations of PCa and castration-resistant PCa (CRPC) progression are the crucial causes in the mortality of patients without the effective treatment. To seek new remedies for the lethal PCa diseases is currently an urgent need. In this study, we endeavored to investigate the therapeutic efficacy of alpinumisoflavone (AIF), a natural product, in PCa. LNCaP (androgen- sensitive) and C4-2 (CRPC) PCa cells were used. An MTT-based method, soft agar colony forming assay, biological progression approaches were applied to determine cell viability, migration, and invasion. A fatty acid quantification kit, a cholesterol detection kit and oil red O staining were conducted to analyze the intracellular levels of lipids and cholesterols. Apoptosis assays were also performed. AIF reduced cell viability, migration, and invasion in PCa cells. The expression of androgen receptor (AR), fatty acid synthase (FASN), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was substantially inhibited by AIF treatment in PCa cells. Furthermore, by inhibiting FASN and HMGCR expression, AIF decreased the amounts of intracellular fatty acids, cholesterols, and lipid droplets in PCa cells. Significantly, through coordinated targeting FASN- and HMGCR-regulated biosynthesis and the AR axis, AIF activated the caspase-associated apoptosis in PCa cells. These results collectively demonstrated for the first time the potential of AIF as a novel and attractive remedy and provided an alternative opportunity to cure PCa malignancy.

2.
Phytomedicine ; 93: 153806, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34740154

RESUMEN

BACKGROUND: Castration-resistant prostate cancer (CRPC) is one of the main causes of male cancer mortality. There is currently no effective treatment to cure this deadly prostate cancer (PCa) progression. However, recent research showed that activation of lipogenesis leads to CRPC progression. It provides a rationale to target the highly lipogenic activity as a novel and promising therapy against lethal CRPC. PURPOSES: The present study aims to evaluate the anticancer efficacy and the molecular mechanism of cell suspension culture extract from Eriobotrya japonica (EJCE) in PCa, including CRPC. METHODS: Cell growth, migration and invasion analyses were performed by MTT method, a wound healing assay and the transwell method, respectively. Apoptosis was assessed by a flow cytometry-based Annexin V-FITC/PI assay, caspase enzymatic activity and Western blot analyses. Lipogenesis was determined by a Fatty Acid Quantification Kit and an Oil Red O staining. The in vivo experiment was conducted by a xenograft mouse model. RESULTS: PCa cell growth, migration and invasion were significantly affected by EJCE. EJCE decreased expression of sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FASN) in PCa cells, two main factors for lipogenesis. By inhibiting SREBP-1/FASN, EJCE reduced the intracellular fatty acid levels and lipid droplet accumulation in PCa. Moreover, EJCE down-regulated the androgen receptor (AR) and prostate-specific antigen (PSA) in PCa cells. Significantly, EJCE exhibited the potential anticancer activity by suppressing the growth and leading to apoptosis of CRPC tumors in a xenograft mouse model. CONCLUSION: These results reveal a novel therapeutic molecular mechanism of EJCE in PCa. Blockade of SREBP-1/FASN-driven metabolism and AR by EJCE could be employed as a potent opportunity to cure malignant PCa.


Asunto(s)
Eriobotrya , Neoplasias de la Próstata , Animales , Apoptosis , Extractos Celulares , Línea Celular Tumoral , Proliferación Celular , Acido Graso Sintasa Tipo I , Ácido Graso Sintasas , Humanos , Ratones , Extractos Vegetales/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA