RESUMEN
Studying how food web structure and function vary through time represents an opportunity to better comprehend and anticipate ecosystem changes. Yet, temporal studies of highly resolved food web structure are scarce. With few exceptions, most temporal food web studies are either too simplified, preventing a detailed assessment of structural properties or binary, missing the temporal dynamics of energy fluxes among species. Using long-term, multi-trophic biomass data coupled with highly resolved information on species feeding relationships, we analysed food web dynamics in the Gulf of Riga (Baltic Sea) over more than three decades (1981-2014). We combined unweighted (topology-based) and weighted (biomass- and flux-based) food web approaches, first, to unravel how distinct descriptors can highlight differences (or similarities) in food web dynamics through time, and second, to compare temporal dynamics of food web structure and function. We find that food web descriptors vary substantially and distinctively through time, likely reflecting different underlying ecosystem processes. While node- and link-weighted metrics reflect changes related to alterations in species dominance and fluxes, unweighted metrics are more sensitive to changes in species and link richness. Comparing unweighted, topology-based metrics and flux-based functions further indicates that temporal changes in functions cannot be predicted using unweighted food web structure. Rather, information on species population dynamics and weighted, flux-based networks should be included to better comprehend temporal food web dynamics. By integrating unweighted, node- and link-weighted metrics, we here demonstrate how different approaches can be used to compare food web structure and function, and identify complementary patterns of change in temporal food web dynamics, which enables a more complete understanding of the ecological processes at play in ecosystems undergoing change.
Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biomasa , Dinámica PoblacionalRESUMEN
Functional traits are becoming more common in the analysis of marine zooplankton community dynamics associated with environmental change. We used zooplankton groups with common functional properties to assess long-term trends in the zooplankton caused by certain environmental conditions in a highly eutrophicated gulf.Time series of zooplankton traits have been collected since the 1960s in the Gulf of Riga, Baltic Sea, and were analyzed using a combination of multivariate methods (principal coordinate analysis) and generalized additive models.One of the most significant changes was the considerable increase in the amount of the zooplankton functional groups (FGR) in coastal springtime communities, and dominance shifts from more complex to simpler organism groups-cladocerans and rotifers.The results also show that functional trait organism complexity (body size) decreased considerably due to cladoceran and rotifer increase following elevated water temperature. Salinity and oxygen had negligible effects on the zooplankton community.
RESUMEN
Vitamin B1 (thiamin) deficiency is an issue periodically affecting a wide range of taxa worldwide. In aquatic pelagic systems, thiamin is mainly produced by bacteria and phytoplankton and is transferred to fish and birds via zooplankton, but there is no general consensus on when or why this transfer is disrupted. We focus on the occurrence in salmon (Salmo salar) of a thiamin deficiency syndrome (M74), the incidence of which is highly correlated among populations derived from different spawning rivers. Here, we show that M74 in salmon is associated with certain large-scale abiotic changes in the main common feeding area of salmon in the southern Baltic Sea. Years with high M74 incidence were characterized by stagnant periods with relatively low salinity and phosphate and silicate concentrations but high total nitrogen. Consequently, there were major changes in phytoplankton and zooplankton, with, e.g., increased abundances of Cryptophyceae, Dinophyceae, Diatomophyceae and Euglenophyceae and Acartia spp. during high M74 incidence years. The prey fish communities also had increased stocks of both herring and sprat in these years. Overall, this suggests important changes in the entire food web structure and nutritional pathways in the common feeding period during high M74 incidence years. Previous research has emphasized the importance of the abundance of planktivorous fish for the occurrence of M74. By using this 27-year time series, we expand this analysis to the entire ecosystem and discuss potential mechanisms inducing thiamin deficiency in salmon.
Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Seguimiento de Parámetros Ecológicos/estadística & datos numéricos , Cadena Alimentaria , Salmo salar/fisiología , Deficiencia de Tiamina/veterinaria , Animales , Seguimiento de Parámetros Ecológicos/tendencias , Femenino , Incidencia , Océanos y Mares , Fitoplancton/química , Tiamina/metabolismo , Deficiencia de Tiamina/epidemiología , Deficiencia de Tiamina/etiología , Zooplancton/químicaRESUMEN
The European Marine Strategy Framework Directive requires the EU Member States to estimate the level of anthropogenic impacts on their marine systems using 11 Descriptors. Assessing food web response to altered habitats is addressed by Descriptor 4 and its indicators, which are being developed for regional seas. However, the development of simple foodweb indicators able to assess the health of ecologically diverse, spatially variable and complex interactions is challenging. Zooplankton is a key element in marine foodwebs and thus comprise an important part of overall ecosystem health. Here, we review work on zooplankton indicator development using long-term data sets across the Baltic Sea and report the main findings. A suite of zooplankton community metrics were evaluated as putative ecological indicators that track community state in relation to Good Environmental Status (GES) criteria with regard to eutrophication and fish feeding conditions in the Baltic Sea. On the basis of an operational definition of GES, we propose mean body mass of zooplankton in the community in combination with zooplankton stock measured as either abundance or biomass to be applicable as an integrated indicator that could be used within the Descriptor 4 in the Baltic Sea. These metrics performed best in predicting zooplankton being in-GES when considering all datasets evaluated. However, some other metrics, such as copepod biomass, the contribution of copepods to the total zooplankton biomass or biomass-based Cladocera: Copepoda ratio, were equally reliable or even superior in certain basin-specific assessments. Our evaluation suggests that in several basins of the Baltic Sea, zooplankton communities currently appear to be out-of-GES, being comprised by smaller zooplankters and having lower total abundance or biomass compared to the communities during the reference conditions; however, the changes in the taxonomic structure underlying these trends vary widely across the sea basins due to the estuarine character of the Baltic Sea.