Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Phylogenet Evol ; 188: 107892, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37524217

RESUMEN

As genomic data proliferates, the prevalence of post-speciation gene flow is making species boundaries and relationships increasingly ambiguous. Although current approaches inferring fully bifurcating phylogenies based on concatenated datasets provide simple and robust answers to many species relationships, they may be inaccurate because the models ignore inter-specific gene flow and incomplete lineage sorting. To examine the potential error resulting from ignoring gene flow, we generated both a RAD-seq and a 500 protein-coding loci highly multiplexed amplicon (HiMAP) dataset for a monophyletic group of 12 species defined as the Bactrocera dorsalis sensu lato clade. With some of the world's worst agricultural pests, the taxonomy of the B. dorsalis s.l. clade is important for trade and quarantines. However, taxonomic confusion confounds resolution due to intra- and interspecific phenotypic variation and convergence, mitochondrial introgression across half of the species, and viable hybrids. We compared the topological convergence of our datasets using concatenated phylogenetic and various multispecies coalescent approaches, some of which account for gene flow. All analyses agreed on species delimitation, but there was incongruence between species relationships. Under concatenation, both datasets suggest identical species relationships with mostly high statistical support. However, multispecies coalescent and multispecies network approaches suggest markedly different hypotheses and detected significant gene flow. We suggest that the network approaches are likely more accurate because gene flow violates the assumptions of the concatenated phylogenetic analyses, but the data-reductive requirements of network approaches resulted in reduced statistical support and could not unambiguously resolve gene flow directions. Our study highlights the importance of testing for gene flow, particularly with phylogenomic datasets, even when concatenated approaches receive high statistical support.


Asunto(s)
Flujo Génico , Genómica , Animales , Filogenia , Genoma , Insectos/genética
2.
Cladistics ; 39(1): 1-17, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35944148

RESUMEN

Sesiids are a diverse group of predominantly diurnal moths, many of which are Batesian mimics of Hymenoptera. However, their diversity and relationships are poorly understood. A multi-gene phylogenetic analysis of 48 North American sesiid species confirmed the traditional taxonomic tribal ranks, demonstrated the paraphyly of Carmenta and Synanthedon with respect to several other genera and ultimately provided minimal phylogenetic resolution within and between North American and European groups. Character support from each gene suggested inconsistency between the phylogenetic signal of the CAD gene and that of the other four genes. However, removal of CAD from subsequent phylogenetic analyses did not substantially change the initial phylogenetic results or return Carmenta and Synanthedon as reciprocally monophyletic, suggesting that it was not impacting the overall phylogenetic signal. The lack of resolution using genes that are typically informative at the species level for other lepidopterans suggests a surprisingly rapid radiation of species in Carmenta/Synanthedon. This group also exhibits a wide range of mimicry strategies and hostplant usage, which could be fertile ground for future study.


Asunto(s)
Himenópteros , Mariposas Nocturnas , Animales , Filogenia , Mariposas Nocturnas/genética , Evolución Biológica , América del Norte
3.
Mol Phylogenet Evol ; 155: 107002, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152535

RESUMEN

Allopatric speciation should be the dominant model of diversification across archipelagos because islands naturally promote isolation. It also follows that ecologically similar, vagile species should be more resistant to this kind of isolation due to dispersal and unifying selection. In a closely-related group of endemic Hawaiian hawkmoths, we found confounding patterns of inter-island connectivity and speciation that did not correlate with vagility, ecological specialization, or island age. Speciation occurred both in allopatric and sympatric taxa, with only the oldest and youngest islands fostering single-island endemic species. The intermediately-sized, central islands supported a combination of endemic and more widely-occurring lineages, suggesting no clear pattern leading to the current diversity in Hawaii. While some species are relatively common, others are apparently extinct or very rare, even on the same island. Further research into the specific mechanisms for these patterns in Hyles may prove broadly informative for understanding both cladogenesis and improving conservation planning. Our study identifies one new species endemic to Kauai and unique mitochondrial lineages in H. perkinsi, which may prove to be new species.


Asunto(s)
Biodiversidad , Mariposas Nocturnas/fisiología , Animales , Teorema de Bayes , Especiación Genética , Genética de Población , Hawaii , Islas , Filogenia , Especificidad de la Especie , Factores de Tiempo
4.
Mol Phylogenet Evol ; 164: 107256, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34256128

RESUMEN

The California Floristic province is a biodiversity hotspot. Understanding the phylogeographic patterns that exist in this diverse region is essential to understanding its evolution and for guiding conservation efforts. Calosaturnia is a charismatic silkmoth genus endemic to large portions of the region with three described species, C. mendocino, C. walterorum, and C. albofasciata. We sampled all three species from across their ranges, sequenced 1463 bp of mitochondrial COI and 1941 bp of nuclear DNA from three genes, and reconstructed phylogenetic relationships and estimated divergence times within the lineages. All three species show pronounced evidence of isolation and, in two cases, secondary reconnection. An unexpected monophyletic mtDNA lineage was found in the Central Coast region, in a region thought to represent an intergrade between C. mendocino and C. walterorum. Our genetic data also significantly revise previous hypotheses as to which species occur in which regions, suggesting that historical ecological changes around four Ma ago isolated some lineages, and a secondary isolation event two Ma ago led to isolation of populations both in the Central Coast region and the southern Sierra Nevada. Our results add to a currently under-appreciated pattern suggesting that coastal Central California is not a transition zone between Northern and Southern California Floristic Province faunas but rather its own unique, periodically isolated, biogeographic region. They also suggest cryptic diversity may be present in many other currently unrecognized groups. Additional research should focus on this central California region because many species may be highly restricted in range and in need of conservation attention.


Asunto(s)
Bombyx , Animales , Biodiversidad , Bombyx/genética , California , ADN Mitocondrial/genética , Variación Genética , Filogenia , Filogeografía
5.
J Hered ; 111(1): 1-20, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31958131

RESUMEN

Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.


Asunto(s)
Adaptación Biológica , Especiación Genética , Animales , Filogeografía , Plantas , Análisis Espacial , Tiempo
6.
Mol Ecol ; 27(22): 4417-4429, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30267600

RESUMEN

Local adaptation can be a fundamental component of speciation, but its dynamics in relation to gene flow are not necessarily straightforward. Herbivorous taxa with localized host plant or habitat specialization across their geographic range are ideal models for investigating the patterns and constraints of local adaptation and its impact on diversification. The charismatic, day-flying moths of the Hemileuca maia species complex (Lepidoptera: Saturniidae) are such taxa, as they are geographically widespread, exhibit considerable ecological and morphological variability and host and habitat specificity, but apparently lack genetic differentiation across their range. Here, we use genomewide single nucleotide polymorphisms to assess relationships and population structure of this group across North America and investigate the scales where genomic divergence correlates with adaptive ecological characteristics. In contrast to previous genetic studies of the group, we find broad- and fine-scale genetic differentiation between lineages, which is at odds with various levels of taxonomic description and recognition of conservation units. Furthermore, ecological specialization only explains some fine-scale genetic differentiation, and across much of the group's range, local adaptation is apparently occurring in the face of strong gene flow. These results provide unprecedented insight into drivers of speciation in this group, the relationship between taxonomy and genomics-informed species boundaries and conservation management of internationally protected entities. Broadly, this system provides a model for understanding how local adaptation in an herbivore can arise and be maintained in the face of apparently strong gene flow, and the importance of geographic isolation in generating genomic divergence, despite a lack of ecological divergence.


Asunto(s)
Flujo Génico , Especiación Genética , Genética de Población , Mariposas Nocturnas/clasificación , Filogenia , Adaptación Fisiológica , Animales , Ecosistema , América del Norte , Polimorfismo de Nucleótido Simple
7.
Mol Ecol ; 27(22): 4459-4474, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30252975

RESUMEN

Biological control agents have several advantages over chemical control for pest management, including the capability to restore ecosystem balance with minimal non-target effects and a lower propensity for targets to develop resistance. These factors are particularly important for invasive species control. The coconut rhinoceros beetle (Oryctes rhinoceros Linnaeus) is a major palm pest that invaded many Pacific islands in the early 20th century through human-mediated dispersal. Application of the Oryctes nudivirus in the 1960s successfully halted the beetle's first invasion wave and made it a textbook example of successful biological control. However, a recently discovered O. rhinoceros biotype that is resistant to the nudivirus appears to be correlated with a new invasion wave. We performed a population genomics analysis of 172 O. rhinoceros from seven regions, including native and invasive populations, to reconstruct invasion pathways and explore correlation between recent invasions and biotypes. With ddRAD sequencing, we generated data sets ranging from 4,000 to 209,000 loci using stacks and ipyrad software pipelines and compared genetic signal in downstream clustering and phylogenetic analyses. Analysis suggests that the O. rhinoceros resurgence is mediated by the nudivirus-resistant biotype. Genomic data have been proven essential to understanding the new O. rhinoceros biotype's invasion patterns and interactions with the original biotype. Such information is crucial to optimization of strategies for quarantine and control of resurgent pests. Our results demonstrate that while invasions are relatively rare events, new introductions can have significant ecological consequences, and quarantine vigilance is required even in previously invaded areas.


Asunto(s)
Cocos , Escarabajos/genética , Escarabajos/virología , Genética de Población , Control Biológico de Vectores , Animales , Agentes de Control Biológico , Resistencia a la Enfermedad/genética , Especies Introducidas , Islas del Pacífico , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
8.
Mol Phylogenet Evol ; 121: 139-149, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29224785

RESUMEN

Molecular and morphological research often suggest conflicting results. Selective pressure on certain morphologies can confound understanding of evolutionary relationships. Dacini is one of the most diverse tribes of tephritid flies and contains many economically important pest species. Their black and yellow patterned body markings are presumed to act as wasp mimicry, and the characters separating species and groups are limited and in some cases phenotypically plastic. The traditional taxonomy of the tribe is controversial because groupings are based on unique combinations of morphological characters without the use of cladistic methods, though recent phylogenetic and taxonomic analyses have resulted in significant changes to their taxonomy. The monophyly of the three largest genera in the tribe has been tested with only small numbers of representatives per genus and a limited number of genes. To further understand the taxonomy and evolution of Dacini we sequenced seven genes from 167 Dacini species and five dipteran outgroups to construct a robust phylogeny and test phylogenetic relationships between genera, subgenera, and species complexes. Our phylogeny confirms the monophyly of Dacus, Bactrocera, and Zeugodacus. However, most groups below the genus level are not monophyletic, and only through further revision will we be able to understand their evolution and clarify the taxonomy within this tribe.


Asunto(s)
Genes de Insecto , Filogenia , Tephritidae/clasificación , Tephritidae/genética , Animales , Secuencia de Bases , Teorema de Bayes , ADN Mitocondrial/genética , Geografía
9.
Mol Phylogenet Evol ; 109: 388-403, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28119108

RESUMEN

The tortricid moth genus Syndemis has ten described species, with two polyphagous species in Europe and North America respectively. We sequenced five nuclear and four mitochondrial genes for Syndemis samples across both continents and discovered unexpected, extensive diversification restricted to California. DNA evidence supports five new, undescribed, species endemic to California, while the rest of North America and Europe have only one species each. Further, the nuclear genes are less variable and yield contrasting phylogenetic signal compared to mitochondrial DNA for basal relationships between taxa across the genus. Such conflict strongly suggests that male and female moths exhibit radically different levels of philopatry. Our results highlight the importance of sex-specific behavior, and the need for inclusion of multiple genes to fully understand species boundaries, their causes, and the process of speciation. While mtDNA introgression often is invoked to explain incongruous haplotype distributions, our study shows that nuclear DNA selective sweeps, or swamping, can occur while mtDNA and ecology preserve an ancient divergence that is not discernable in nuclear DNA. This study further demonstrates that diversification of herbivores may occur on relictual, declining hostplants, which contrasts with the dominant co-speciation model.


Asunto(s)
Especiación Genética , Mariposas Nocturnas/fisiología , Animales , Secuencia de Bases , California , ADN Mitocondrial , Femenino , Genes Mitocondriales , Haplotipos , Masculino , Mariposas Nocturnas/genética , Filogenia , Análisis de Secuencia de ADN , Caracteres Sexuales , Árboles/parasitología
10.
Conserv Biol ; 28(4): 1077-88, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25052568

RESUMEN

Insects that should be considered for conservation attention are often overlooked because of a lack of data. The detailed information necessary to assess population growth, decline, and maximum range is particularly difficult to acquire for rare and cryptic species. Many of these difficulties can be overcome with the use of life table analyses and heat energy accumulation models common in agriculture. The wekiu bug (Nysius wekiuicola), endemic to the summit of one volcanic mountain in Hawaii, is a rare insect living in an environmentally sensitive alpine stone desert, where field-based population assessments would be inefficient or potentially detrimental to natural and cultural resources. We conducted laboratory experiments with the insects by manipulating rearing temperatures of laboratory colonies and made detailed observations of habitat conditions to develop life tables representing population growth parameters and environmental models for wekiu bug phenology and demographic change. Wekiu bugs developed at temperatures only found in its environment on sunny days and required the thermal buffer found on cinder cones for growth and population increase. Wekiu bugs required approximately 3.5 months to complete one generation. The bug developed optimally from 26 to 30 °C, temperatures that are much higher than the air temperature attains in its elevational range. The developmental temperature range of the species confirmed a physiological reason why the wekiu bug is only found on cinder cones. This physiology information can help guide population monitoring and inform habitat restoration and conservation. The wekiu bug was a candidate for listing under the U.S. Endangered Species Act, and the developmental parameters we quantified were used to determine the species would not be listed as endangered or threatened. The use of developmental threshold experiments, life table analyses, and degree day modeling can directly inform otherwise unobservable habitat needs and demographic characteristics of extremely rare insects.


Asunto(s)
Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Heterópteros/fisiología , Agricultura , Animales , Ecosistema , Femenino , Hawaii , Heterópteros/crecimiento & desarrollo , Estadios del Ciclo de Vida , Masculino , Temperatura
11.
J Econ Entomol ; 107(5): 1946-58, 2014 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-26309285

RESUMEN

Population genetic diversity of the oriental fruit fly, Bactrocera dorsalis (Hendel), on the Hawaiian islands of Oahu, Maui, Kauai, and Hawaii (the Big Island) was estimated using DNA sequences of the mitochondrial cytochrome c oxidase subunit I gene. In total, 932 flies representing 36 sampled sites across the four islands were sequenced for a 1,500-bp fragment of the gene named the C1500 marker. Genetic variation was low on the Hawaiian Islands with >96% of flies having just two haplotypes: C1500-Haplotype 1 (63.2%) or C1500-Haplotype 2 (33.3%). The other 33 flies (3.5%) had haplotypes similar to the two dominant haplotypes. No population structure was detected among the islands or within islands. The two haplotypes were present at similar frequencies at each sample site, suggesting that flies on the various islands can be considered one population. Comparison of the Hawaiian data set to DNA sequences of 165 flies from outbreaks in California between 2006 and 2012 indicates that a single-source introduction pathway of Hawaiian origin cannot explain many of the flies in California. Hawaii, however, could not be excluded as a maternal source for 69 flies. There was no clear geographic association for Hawaiian or non-Hawaiian haplotypes in the Bay Area or Los Angeles Basin over time. This suggests that California experienced multiple, independent introductions from different sources.


Asunto(s)
Variación Genética , Tephritidae/genética , Distribución Animal , Animales , California , Complejo IV de Transporte de Electrones/genética , Haplotipos , Hawaii , Control de Insectos , Proteínas de Insectos/genética , Especies Introducidas , Análisis de Secuencia de ADN
12.
Mol Ecol Resour ; : e13987, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956928

RESUMEN

The utility of a universal DNA 'barcode' fragment (658 base pairs of the Cytochrome C Oxidase I [COI] gene) has been established as a useful tool for species identification, and widely criticized as one for understanding the evolutionary history of a group. Large amounts of COI sequence data have been produced that hold promise for rapid species identification, for example, for biosecurity. The fruit fly tribe Dacini holds about a thousand species, of which 80 are pests of economic concern. We generated a COI reference library for 265 species of Dacini containing 5601 sequences that span most of the COI gene using circular consensus sequencing. We compared distance metrics versus monophyly assessments for species identification and although we found a 'soft' barcode gap around 2% pairwise distance, the exceptions to this rule dictate that a monophyly assessment is the only reliable method for species identification. We found that all fragments regularly used for Dacini fruit fly identification >450 base pairs long provide similar resolution. 11.3% of the species in our dataset were non-monophyletic in a COI tree, which is mostly due to species complexes. We conclude with recommendations for the future generation and use of COI libraries. We revise the generic assignment of Dacus transversus stat. rev. Hardy 1982, and Dacus perpusillus stat. rev. Drew 1971 and we establish Dacus maculipterus White 1998 syn. nov. as a junior synonym of Dacus satanas Liang et al. 1993.

13.
Mol Phylogenet Evol ; 68(3): 381-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23643972

RESUMEN

The hawkmoth genus Manduca is a diverse group of very large, conspicuous moths that has served as an important model across many biological disciplines. Two species in particular, the tobacco hornworm (Manduca sexta) and the tomato hornworm (Manduca quinquemaculatus) have been researched extensively. Studies across biological fields have referred to these two species as being closely related or even sister species, but the extent to which these two model organisms are related remains largely unknown. We conducted a comprehensive multi-gene phylogenetic analysis of Manduca, based on both an ML and Bayesian framework, which resulted in a monophyletic Manduca but only when two other genera, Dolba and Euryglottis are included. We tentatively conclude that the sister group to Manduca sexta comprises the Caribbean M. afflicta and M. johanni, and the sister lineage to this clade includes M. quinquemaculatus and the Hawaiian M. blackburni. Thus, M. sexta and M. quinquemaculatus are closely related, but are not sister species. Biogeographical analyses reveal an ancestral center of diversification in Central America, and Manduca appears to have subsequently colonized North and South America. Our phylogeny provides an important foundation for comparative studies of two model organisms and their relatives.


Asunto(s)
Evolución Biológica , Manduca/genética , Animales , Teorema de Bayes , América Central , Evolución Molecular , Genes de Insecto , Manduca/clasificación , Filogenia , Filogeografía , Análisis de Secuencia de ADN
14.
Proc Natl Acad Sci U S A ; 107(13): 5903-6, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20308549

RESUMEN

Insects are the most diverse form of life on the planet, dominating both terrestrial and freshwater ecosystems, yet no species has a life stage able to breath, feed, and develop either continually submerged or without access to water. Such truly amphibious insects are unrecorded. In mountain streams across the Hawaiian Islands, some caterpillars in the endemic moth genus Hyposmocoma are truly amphibious. These larvae can breathe and feed indefinitely both above and below the water's surface and can mature completely submerged or dry. Remarkably, a molecular phylogeny based on 2,243 bp from both nuclear (elongation factor 1alpha and carbomoylphosphate synthase) and mitochondrial (cytochrome oxidase I) genes representing 216 individuals and 89 species of Hyposmocoma reveals that this amphibious lifestyle is an example of parallel evolution and has arisen from strictly terrestrial clades at least three separate times in the genus starting more than 6 million years ago, before the current high islands existed. No other terrestrial genus of animals has sponsored so many independent aquatic invasions, and no other insects are able to remain active indefinitely above and below water. Why and how Hyposmocoma, an overwhelmingly terrestrial group, repeatedly evolved unprecedented aquatic species is unclear, although there are many other evolutionary anomalies across the Hawaiian archipelago. The uniqueness of the community assemblages of Hawaii's isolated biota is likely critical in generating such evolutionary novelty because this amphibious ecology is unknown anywhere else.


Asunto(s)
Ecosistema , Evolución Molecular , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/genética , Animales , Ambiente , Genes de Insecto , Hawaii , Biología Marina , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Factores de Tiempo
15.
Curr Opin Insect Sci ; 58: 101052, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37150509

RESUMEN

As the amount of genomic data for nonmodel taxa grows, it is increasingly clear that gene flow across species barriers in insects is much more common than previously thought. In recent years, the decreased cost and increased accuracy of long-read sequencing has enabled the assembly of high-quality reference genomes and chromosome maps for nonmodel insects. With this long-read data, we can now not only compare variation across the genome among homologous genes between species, which has been the basis of phylogenetics for more than 30 years, but also tease apart evidence of ancient and recent hybridization and gene flow. The implications of hybridization for species adaptation may be more positive than previously considered, explaining its prevalence across many groups of insects. Unfortunately, due to anthropogenic actions, some pest species appear to be benefitting from hybridization and gene flow, facilitating future invasions.


Asunto(s)
Genómica , Especies Introducidas , Animales , Análisis de Secuencia de ADN , Genoma , Insectos/genética
16.
Mol Phylogenet Evol ; 65(1): 305-16, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22772027

RESUMEN

The moth genus Omiodes (Crambidae) comprises about 80 species and has a circumtropical distribution, with the type species, O. humeralis, occurring in Central America. In Hawaii, there are 23 native species currently placed in Omiodes, but this classification has been disputed, and they were previously placed in various other genera. We used molecular phylogenetic analyses to assess the monophyly of Omiodes as a whole, and specifically of the Hawaiian species, as well as their geographic origins and possible ancestral host plants. Mitochondrial (COI) and nuclear (wingless, EF1α, CAD, and RPS5) DNA was sequenced for Omiodes from Hawaii, South America, and Australasia, along with many other putative outgroup spilomeline genera. Phylogenies were estimated using maximum likelihood and Bayesian inference, and various taxon and character datasets. With the exception of two paleotropical species (O. basalticalis and O. odontosticta, whose placement was unresolved) all Hawaiian, paleotropical and neotropical Omiodes, including the type species, fell within a well-supported, monophyletic clade. Although the center of diversity for Omiodes is in the Neotropics, its center of origin was ambiguous, due to poor resolution of the basal splits between paleotropical and neotropical Omiodes. Very low genetic divergence within the Hawaiian Omiodes suggests a relatively recent colonization of the Hawaiian Islands. Phylogenies constructed using all codon positions were poorly resolved at intergeneric levels, and did not reveal a sister taxon for Omiodes, but phylogenies constructed using only first and second codon positions suggested a close relationship with Cnaphalocrocis. The monophyly of several other spilomeline genera is also discussed.


Asunto(s)
Evolución Biológica , Mariposas Nocturnas/clasificación , Filogenia , Animales , Australasia , Núcleo Celular/genética , ADN Mitocondrial/genética , Variación Genética , Hawaii , Mariposas Nocturnas/genética , Análisis de Secuencia de ADN , América del Sur
17.
R Soc Open Sci ; 9(1): 211862, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35116168

RESUMEN

Understanding the factors driving ecological and evolutionary interactions of economically important plant species is important for agricultural sustainability. The geography of crop wild relatives, including wild potatoes (Solanum section Petota), have received attention; however, such information has not been analysed in combination with phylogenetic histories, genomic composition and reproductive systems to identify potential species for use in breeding for abiotic stress tolerance. We used a combination of ordinary least-squares (OLS) and phylogenetic generalized least-squares (PGLM) analyses to identify the discrete climate classes that make up the climate niche that wild potato species inhabit in the context of breeding system and ploidy. Self-incompatible diploid or self-compatible polyploid species significantly increase the number of discrete climate classes within a climate niche inhabited. This result was sustained when correcting for phylogenetic non-independence in the linear model. Our results support the idea that specific breeding system and ploidy combinations increase niche breadth through the decoupling of geographical range and niche diversity, and therefore, these species may be of particular interest for crop adaptation to a changing climate.

18.
Ecol Evol ; 10(16): 8871-8879, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32884663

RESUMEN

Understanding the factors that determine the realized and potential distribution of a species requires knowledge of abiotic, physiological, limitations as well as ecological interactions. Fungi of the order Laboulbeniales specialize on arthropods and are typically thought to be highly specialized on a single species or closely related group of species. Because infections are almost exclusively transmitted through direct contact between the hosts, the host ecology, to a large extent, determines the distribution and occurrence of the fungus. We examined ~20,000 fruit flies (Diptera: Dacinae) collected in Malaysia, Sulawesi, Australia, and the Solomon Islands between 2017 and 2019 for fungal infections and found 197 infected flies across eight different Bactrocera species. Morphology and 1,363 bps of small subunit (18S) DNA sequences both support that the infections are from a single polyphagous fungal species Stigmatomyces dacinus-a known ectoparasite of these fruit flies. This leads to the question: why is S. dacinus rare, when its hosts are widespread and abundant? In addition, the hosts are all Bactrocera, a genus with ~480 species, but 37 Bactrocera species found sympatric with the hosts were never infected. Host-selection does not appear to be phylogenetically correlated. These results suggest a hidden complexity in how different, but closely related, host species vary in their susceptibility, which somehow limits the abundance and dispersal capability of the fungus.

19.
Zookeys ; 973: 103-122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117060

RESUMEN

Although there is scientific consensus on most of the major biogeographic regions in the world, the demarcation of the area connecting Southeast Asia with Australia and Oceania remains debated. Two candidate boundaries potentially explain faunistic diversity patterns in the regions: Lydekker's and Wallace's lines. The islands in between both 'lines' are jointly termed Wallacea, with Sulawesi as the largest landmass. We surveyed Dacini fruit flies (Tephritidae: Dacinae) in Sulawesi between 2016 and 2019 using traps baited with male lures, resulting in 4,517 collected flies. We identified all specimens to species level, which adds 15 new species records to the island, bringing the total number of Dacini species in Sulawesi to 83. The biogeographic affinity of species in the updated checklist reveals a strong connection with former 'Sunda' (41% of species); validating Lydekker's line, but also a high level of endemism (47% of species), confirming the uniqueness of Wallacea as a biogeographic region. We further describe a new species, Bactrocera (Bactrocera) niogreta Doorenweerd, sp. nov. and discuss the taxonomy of several interesting species.

20.
Sci Rep ; 10(1): 6887, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327680

RESUMEN

Distance decay principles predict that species with larger geographic ranges would have greater intraspecific genetic diversity than more restricted species. However, invasive pest species may not follow this prediction, with confounding implications for tracking phenomena including original ranges, invasion pathways and source populations. We sequenced an 815 base-pair section of the COI gene for 441 specimens of Bactrocera correcta, 214 B. zonata and 372 Zeugodacus cucurbitae; three invasive pest fruit fly species with overlapping hostplants. For each species, we explored how many individuals would need to be included in a study to sample the majority of their haplotype diversity. We also tested for phylogeographic signal and used demographic estimators as a proxy for invasion potency. We find contrasting patterns of haplotype diversity amongst the species, where B. zonata has the highest diversity but most haplotypes were represented by singletons; B. correcta has ~7 dominant haplotypes more evenly distributed; Z. cucurbitae has a single dominant haplotype with closely related singletons in a 'star-shape' surrounding it. We discuss how these differing patterns relate to their invasion histories. None of the species showed meaningful phylogeographic patterns, possibly due to gene-flow between areas across their distributions, obscuring or eliminating substructure.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Variación Genética , Haplotipos/genética , Especies Introducidas , Tephritidae/genética , Animales , Demografía , Genética de Población , Funciones de Verosimilitud , Filogeografía , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA