Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(18): e2322692121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652744

RESUMEN

Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Elementos de Facilitación Genéticos , Hipotálamo , Proopiomelanocortina , Pez Cebra , Animales , Proopiomelanocortina/metabolismo , Proopiomelanocortina/genética , Ratones , Hipotálamo/metabolismo , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo , Femenino , Masculino , Ratones Transgénicos , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Mamíferos/metabolismo , Mamíferos/genética
2.
Mol Biol Evol ; 40(7)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37247388

RESUMEN

The genetic bases underlying the evolution of morphological and functional innovations of the mammalian inner ear are poorly understood. Gene regulatory regions are thought to play an important role in the evolution of form and function. To uncover crucial hearing genes whose regulatory machinery evolved specifically in mammalian lineages, we mapped accelerated noncoding elements (ANCEs) in inner ear transcription factor (TF) genes and found that PKNOX2 harbors the largest number of ANCEs within its transcriptional unit. Using reporter gene expression assays in transgenic zebrafish, we determined that four PKNOX2-ANCEs drive differential expression patterns when compared with ortholog sequences from close outgroup species. Because the functional role of PKNOX2 in cochlear hair cells has not been previously investigated, we decided to study Pknox2 null mice generated by CRISPR/Cas9 technology. We found that Pknox2-/- mice exhibit reduced distortion product otoacoustic emissions (DPOAEs) and auditory brainstem response (ABR) thresholds at high frequencies together with an increase in peak 1 amplitude, consistent with a higher number of inner hair cells (IHCs)-auditory nerve synapsis observed at the cochlear basal region. A comparative cochlear transcriptomic analysis of Pknox2-/- and Pknox2+/+ mice revealed that key auditory genes are under Pknox2 control. Hence, we report that PKNOX2 plays a critical role in cochlear sensitivity at higher frequencies and that its transcriptional regulation underwent lineage-specific evolution in mammals. Our results provide novel insights about the contribution of PKNOX2 to normal auditory function and to the evolution of high-frequency hearing in mammals.


Asunto(s)
Factores de Transcripción , Pez Cebra , Animales , Ratones , Cóclea/metabolismo , Audición , Mamíferos/genética , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Neurosci Res ; 102(2): e25299, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361407

RESUMEN

The dopamine D4 receptor 7-repeat allele (D4.7 R) has been linked with psychiatric disorders such as attention-deficit-hyperactivity disorder, autism, and schizophrenia. However, the highly diverse study populations and often contradictory findings make it difficult to draw reliable conclusions. The D4.7 R has the potential to explain individual differences in behavior. However, there is still a great deal of ambiguity surrounding whether it is causally connected to the etiology of psychiatric disorders. Therefore, humanized D4.7 R mice, with the long third intracellular domain of the human D4.7 R, may provide a valuable tool to examine the relationship between the D4.7 R variant and specific behavioral phenotypes. We report that D4.7 R male mice carrying the humanized D4.7 R variant exhibit distinct behavioral features that are dependent on the light-dark cycle. The behavioral phenotype was characterized by a working memory deficit, delayed decision execution in the light phase, decreased stress and anxiety, and increased risk behavior in the dark phase. Further, D4.7 R mice displayed impaired social recognition memory in both the light and dark phases. These findings provide insight into the potential causal relationship between the human D4.7 R variant and specific behaviors and encourage further consideration of dopamine D4 receptor (DRD4) ligands as novel treatments for psychiatric disorders in which D4.7 R has been implicated.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Memoria a Corto Plazo , Receptores de Dopamina D4 , Animales , Humanos , Masculino , Ratones , Trastorno por Déficit de Atención con Hiperactividad/genética , Dopamina , Trastornos de la Memoria , Receptores de Dopamina D4/genética , Asunción de Riesgos
4.
Mol Psychiatry ; 25(2): 506, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31366917

RESUMEN

A correction to this paper has been published and can be accessed via a link at the top of the paper.

5.
Mol Psychiatry ; 25(2): 491-505, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-29695836

RESUMEN

The dorsal striatum has been linked to decision-making under conflict, but the mechanism by which striatal neurons contribute to approach-avoidance conflicts remains unclear. We hypothesized that striatopallidal dopamine D2 receptor (D2R)-expressing neurons promote avoidance, and tested this hypothesis in two exploratory approach-avoidance conflict paradigms in mice: the elevated zero maze and open field. Genetic elimination of D2Rs on striatopallidal neurons (iMSNs), but not other neural populations, increased avoidance of the open areas in both tasks, in a manner that was dissociable from global changes in movement. Population calcium activity of dorsomedial iMSNs was disrupted in mice lacking D2Rs on iMSNs, suggesting that disrupted output of iMSNs contributes to heightened avoidance behavior. Consistently, artificial disruption of iMSN output with optogenetic stimulation heightened avoidance of open areas of these tasks, while inhibition of iMSN output reduced avoidance. We conclude that dorsomedial striatal iMSNs control approach-avoidance conflicts in exploratory tasks, and highlight this neural population as a potential target for reducing avoidance in anxiety disorders.


Asunto(s)
Reacción de Prevención/fisiología , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Animales , Trastornos de Ansiedad , Encéfalo/metabolismo , Línea Celular , Femenino , Sustancia Gris/metabolismo , Hábitos , Inhibición Psicológica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Optogenética/métodos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Trastorno de Movimiento Estereotipado
6.
Pharmacol Res ; 170: 105745, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34182128

RESUMEN

Polymorphic alleles of the human dopamine D4 receptor gene (DRD4) have been consistently associated with individual differences in personality traits and neuropsychiatric disorders, particularly between the gene encoding dopamine D4.7 receptor variant and attention deficit hyperactivity disorder (ADHD). The α2A adrenoceptor gene has also been associated with ADHD. In fact, drugs targeting the α2A adrenoceptor (α2AR), such as guanfacine, are commonly used in ADHD treatment. In view of the involvement of dopamine D4 receptor (D4R) and α2AR in ADHD and impulsivity, their concurrent localization in cortical pyramidal neurons and the demonstrated ability of D4R to form functional heteromers with other G protein-coupled receptors, in this study we evaluate whether the α2AR forms functional heteromers with D4R and weather these heteromers show different properties depending on the D4R variant involved. Using cortical brain slices from hD4.7R knock-in and wild-type mice, here, we demonstrate that α2AR and D4R heteromerize and constitute a significant functional population of cortical α2AR and D4R. Moreover, in cortical slices from wild-type mice and in cells transfected with α2AR and D4.4R, we detect a negative crosstalk within the heteromer. This negative crosstalk is lost in cortex from hD4.7R knock-in mice and in cells expressing the D4.7R polymorphic variant. We also show a lack of efficacy of D4R ligands to promote G protein activation and signaling only within the α2AR-D4.7R heteromer. Taken together, our results suggest that α2AR-D4R heteromers play a pivotal role in catecholaminergic signaling in the brain cortex and are likely targets for ADHD pharmacotherapy.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Corteza Cerebral/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Dopamina D4/metabolismo , Animales , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/psicología , Corteza Cerebral/efectos de los fármacos , Agonistas de Dopamina/farmacología , Femenino , Células HEK293 , Humanos , Conducta Impulsiva , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Polimorfismo Genético , Unión Proteica , Receptores Adrenérgicos alfa 2/genética , Receptores de Dopamina D4/agonistas , Receptores de Dopamina D4/genética , Oveja Doméstica , Transducción de Señal
7.
J Neurosci ; 39(21): 4023-4035, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30886014

RESUMEN

Food intake is tightly regulated by a group of neurons present in the arcuate nucleus of the hypothalamus, which release Pomc-encoded melanocortins, the absence of which induces marked hyperphagia and early-onset obesity. Although the relevance of hypothalamic POMC neurons in the regulation of body weight and energy balance is well appreciated, little is known about the transcription factors that establish the melanocortin neuron identity during brain development and its phenotypic maintenance in postnatal life. Here, we report that the transcription factor NKX2.1 is present in mouse hypothalamic POMC neurons from early development to adulthood. Electromobility shift assays showed that NKX2.1 binds in vitro to NKX binding motifs present in the neuronal Pomc enhancers nPE1 and nPE2 and chromatin immunoprecipitation assays detected in vivo binding of NKX2.1 to nPE1 and nPE2 in mouse hypothalamic extracts. Transgenic and mutant studies performed in mouse embryos of either sex and adult males showed that the NKX motifs present in nPE1 and nPE2 are essential for their transcriptional enhancer activity. The conditional early inactivation of Nkx2.1 in the ventral hypothalamus prevented the onset of Pomc expression. Selective Nkx2.1 ablation from POMC neurons decreased Pomc expression in adult males and mildly increased their body weight and adiposity. Our results demonstrate that NKX2.1 is necessary to activate Pomc expression by binding to conserved canonical NKX motifs present in nPE1 and nPE2. Therefore, NKX2.1 plays a critical role in the early establishment of hypothalamic melanocortin neuron identity and participates in the maintenance of Pomc expression levels during adulthood.SIGNIFICANCE STATEMENT Food intake and body weight regulation depend on hypothalamic neurons that release satiety-inducing neuropeptides, known as melanocortins. Central melanocortins are encoded byPomc, and Pomc mutations may lead to hyperphagia and severe obesity. Although the importance of central melanocortins is well appreciated, the genetic program that establishes and maintains fully functional POMC neurons remains to be explored. Here, we combined molecular, genetic, developmental, and functional studies that led to the discovery of NKX2.1, a transcription factor that participates in the early morphogenesis of the developing hypothalamus, as a key player in establishing the early identity of melanocortin neurons by activating Pomc expression. Thus, Nkx2.1 adds to the growing list of genes that participate in body weight regulation and adiposity.


Asunto(s)
Melanocortinas/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Factor Nuclear Tiroideo 1/metabolismo , Animales , Peso Corporal/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipotálamo/embriología , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
Mol Biol Evol ; 36(8): 1653-1670, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31137036

RESUMEN

The mammalian inner ear possesses functional and morphological innovations that contribute to its unique hearing capacities. The genetic bases underlying the evolution of this mammalian landmark are poorly understood. We propose that the emergence of morphological and functional innovations in the mammalian inner ear could have been driven by adaptive molecular evolution. In this work, we performed a meta-analysis of available inner ear gene expression data sets in order to identify genes that show signatures of adaptive evolution in the mammalian lineage. We analyzed ∼1,300 inner ear expressed genes and found that 13% show signatures of positive selection in the mammalian lineage. Several of these genes are known to play an important function in the inner ear. In addition, we identified that a significant proportion of genes showing signatures of adaptive evolution in mammals have not been previously reported to participate in inner ear development and/or physiology. We focused our analysis in two of these genes: STRIP2 and ABLIM2 by generating null mutant mice and analyzed their auditory function. We found that mice lacking Strip2 displayed a decrease in neural response amplitudes. In addition, we observed a reduction in the number of afferent synapses, suggesting a potential cochlear neuropathy. Thus, this study shows the usefulness of pursuing a high-throughput evolutionary approach followed by functional studies to track down genes that are important for inner ear function. Moreover, this approach sheds light on the genetic bases underlying the evolution of the mammalian inner ear.


Asunto(s)
Evolución Biológica , Proteínas del Citoesqueleto/genética , Oído Interno/metabolismo , Proteínas con Dominio LIM/genética , Mamíferos/genética , Proteínas de Microfilamentos/genética , Selección Genética , Adaptación Biológica , Animales , Ratones , Transcriptoma
9.
J Neurochem ; 149(3): 362-380, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30664247

RESUMEN

The process of locomotion is controlled by fine-tuned dopaminergic neurons in the Substantia Nigra pars-compacta (SNpc) that projects their axons to the dorsal striatum regulating cortical innervations of medium spiny neurons. Dysfunction in dopaminergic neurotransmission within the striatum leads to movement impairments, gaiting defects, and hypo-locomotion. Due to their high polarity and extreme axonal arborization, neurons depend on molecular motor proteins and microtubule-based transport for their normal function. Transport defects have been associated with neurodegeneration since axonopathies, axonal clogging, microtubule destabilization, and lower motor proteins levels were described in the brain of patients with Parkinson's Disease and other neurodegenerative disorders. However, the contribution of specific motor proteins to the regulation of the nigrostriatal network remains unclear. Here, we generated different conditional knockout mice for the kinesin heavy chain 5B subunit (Kif5b) of Kinesin-1 to unravel its contribution to locomotion. Interestingly, mice with neuronal Kif5b deletion showed hypo-locomotion, movement initiation deficits, and coordination impairments. High pressure liquid chromatography determined that dopamine (DA) metabolism is impaired in neuronal Kif5b-KO, while no dopaminergic cell loss was observed. However, the deletion of Kif5b only in dopaminergic neurons is not sufficient to induce locomotor defects. Noteworthy, pharmacological stimulation of DA release together with agonist or antagonist of DA receptors revealed selective D2-dependent movement initiation defects in neuronal Kif5b-KO. Finally, subcellular fractionation from striatum showed that Kif5b deletion reduced the amount of dopamine D2 receptor in synaptic plasma membranes. Together, these results revealed an important role for Kif5b in the modulation of the striatal network that is relevant to the overall locomotor response. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Cinesinas/metabolismo , Locomoción/fisiología , Receptores de Dopamina D2/metabolismo , Animales , Ratones , Ratones Noqueados
10.
Alcohol Clin Exp Res ; 42(1): 195-205, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29105118

RESUMEN

BACKGROUND: A recent clinical trial found that pharmacological blockade of V1b receptors reduces alcohol relapse in alcohol-dependent patients. SSR149415 is a selective V1b receptor antagonist that has potential for development as an alcohol dependency treatment. In this study, we investigated whether SSR149415 alone or in combination with the mu-opioid receptor (MOP-r) antagonist naltrexone (NTN) would alter excessive alcohol drinking in mice. METHODS: Both sexes of C57BL/6J (B6) mice were subjected to a chronic intermittent access (IA) drinking paradigm (2-bottle choice, 24-hour access every other day) for 3 weeks. Sucrose and saccharin drinking were used as controls for alcohol-specific drug effects. Neuronal proopiomelanocortin (POMC) enhancer (nPE) knockout mice with hypothalamic-specific loss of POMC (including beta-endorphin, the main endogenous ligand of MOP-r) were used as a genetic control for the effects of NTN. RESULTS: Acute administration of SSR149415 (1 to 30 mg/kg) reduced alcohol intake and preference in a dose-dependent manner in both male and female B6 mice after IA. To investigate potential synergistic effects between NTN and SSR149415, we tested 6 different combination doses of SSR149415 and NTN, and found that a combination of SSR149415 (3 mg/kg) and NTN (1 mg/kg) reduced alcohol intake profoundly at doses lower than the individual effective doses in both sexes of B6 mice. We confirmed the effect of SSR149415 on reducing alcohol intake in nPE-/- male mice, consistent with independent mechanisms by which SSR149415 and NTN decrease alcohol drinking. CONCLUSIONS: The combination of V1b antagonist SSR149415 with NTN at individual subthreshold doses shows potential in alcoholism treatment, possibly with less adverse effects.


Asunto(s)
Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Antagonistas de los Receptores de Hormonas Antidiuréticas/administración & dosificación , Indoles/administración & dosificación , Naltrexona/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Pirrolidinas/administración & dosificación , Receptores de Vasopresinas , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/psicología , Animales , Sinergismo Farmacológico , Quimioterapia Combinada , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Proc Natl Acad Sci U S A ; 112(15): E1861-70, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25825735

RESUMEN

Food intake and body weight regulation depend on proper expression of the proopiomelanocortin gene (Pomc) in a group of neurons located in the mediobasal hypothalamus of all vertebrates. These neurons release POMC-encoded melanocortins, which are potent anorexigenic neuropeptides, and their absence from mice or humans leads to hyperphagia and severe obesity. Although the pathophysiology of hypothalamic POMC neurons is well understood, the genetic program that establishes the neuronal melanocortinergic phenotype and maintains a fully functional neuronal POMC phenotype throughout adulthood remains unknown. Here, we report that the early expression of the LIM-homeodomain transcription factor Islet 1 (ISL1) in the developing hypothalamus promotes the terminal differentiation of melanocortinergic neurons and is essential for hypothalamic Pomc expression since its initial onset and throughout the entire lifetime. We detected ISL1 in the prospective hypothalamus just before the onset of Pomc expression and, from then on, Pomc and Isl1 coexpress. ISL1 binds in vitro and in vivo to critical homeodomain binding DNA motifs present in the neuronal Pomc enhancers nPE1 and nPE2, and mutations of these sites completely disrupt the ability of these enhancers to drive reporter gene expression to hypothalamic POMC neurons in transgenic mice and zebrafish. ISL1 is necessary for hypothalamic Pomc expression during mouse and zebrafish embryogenesis. Furthermore, conditional Isl1 inactivation from POMC neurons impairs Pomc expression, leading to hyperphagia and obesity. Our results demonstrate that ISL1 specifies the identity of hypothalamic melanocortin neurons and is required for melanocortin-induced satiety and normal adiposity throughout the entire lifespan.


Asunto(s)
Adiposidad/fisiología , Ingestión de Alimentos/fisiología , Proteínas con Homeodominio LIM/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Factores de Transcripción/metabolismo , Adiposidad/genética , Animales , Secuencia de Bases , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Ingestión de Alimentos/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hiperfagia/genética , Hiperfagia/fisiopatología , Hipotálamo/citología , Hipotálamo/embriología , Hipotálamo/metabolismo , Proteínas con Homeodominio LIM/genética , Masculino , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Datos de Secuencia Molecular , Neuronas/citología , Obesidad/genética , Obesidad/fisiopatología , Proopiomelanocortina/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/metabolismo
12.
PLoS Genet ; 11(2): e1004935, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25671638

RESUMEN

Cell-specific expression of many genes is conveyed by multiple enhancers, with each individual enhancer controlling a particular expression domain. In contrast, multiple enhancers drive similar expression patterns of some genes involved in embryonic development, suggesting regulatory redundancy. Work in Drosophila has indicated that functionally overlapping enhancers canalize development by buffering gene expression against environmental and genetic disturbances. However, little is known about regulatory redundancy in vertebrates and in genes mainly expressed during adulthood. Here we study nPE1 and nPE2, two phylogenetically conserved mammalian enhancers that drive expression of the proopiomelanocortin gene (Pomc) to the same set of hypothalamic neurons. The simultaneous deletion of both enhancers abolished Pomc expression at all ages and induced a profound metabolic dysfunction including early-onset extreme obesity. Targeted inactivation of either nPE1 or nPE2 led to very low levels of Pomc expression during early embryonic development indicating that both enhancers function synergistically. In adult mice, however, Pomc expression is controlled additively by both enhancers, with nPE1 being responsible for ∼80% and nPE2 for ∼20% of Pomc transcription. Consequently, nPE1 knockout mice exhibit mild obesity whereas nPE2-deficient mice maintain a normal body weight. These results suggest that nPE2-driven Pomc expression is compensated by nPE1 at later stages of development, essentially rescuing the earlier phenotype of nPE2 deficiency. Together, these results reveal that cooperative interactions between the enhancers confer robustness of Pomc expression against gene regulatory disturbances and preclude deleterious metabolic phenotypes caused by Pomc deficiency in adulthood. Thus, our study demonstrates that enhancer redundancy can be used by genes that control adult physiology in mammals and underlines the potential significance of regulatory sequence mutations in common diseases.


Asunto(s)
Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Proopiomelanocortina/biosíntesis , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Secuencia Conservada , Femenino , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , Ratones , Neuronas/metabolismo , Filogenia , Embarazo , Proopiomelanocortina/deficiencia , Proopiomelanocortina/genética
13.
Vertex ; 29(138): 102-110, 2018 Mar.
Artículo en Español | MEDLINE | ID: mdl-30605182

RESUMEN

The obesity epidemic began more than two decades ago and is currently expanding. The World Health Organization reported the existence of 2 billion overweight people, of which more than 650 million are obese, therefore more likely to suffer a higher incidence of heart attacks, stroke and cancer as the leading causes of morbidity and mortality. This article analyzes recent socio-cultural modifcations that separated humans from the primary food sources and transformed us from skilled hunters into remorseless scavengers. This separation made us vulnerable to the ups and downs of the global economy and to the interests of powerful agro-industrial conglomerates and their professional spokespeople who aim to re-teach us what we need to eat to be healthy and fit. In this classical conflict, where reason and madness erase the diffuse borders between health and disease, there are questions that deserve defnitive answers. Are obese people sick individuals who cannot control their willpower? Are they addicts involved in self-destructive behaviors? Or they are just victims of an unmerciful hyperconsumerist system where gluttony has become a daily way of life?


Asunto(s)
Obesidad , Pandemias , Humanos , Obesidad/epidemiología
14.
Dev Biol ; 416(1): 212-224, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27212025

RESUMEN

The hypothalamus is a region of the anterior forebrain that controls basic aspects of vertebrate physiology, but the genes involved in its development are still poorly understood. Here, we investigate the function of the homeobox gene Rax/Rx in early hypothalamic development using a conditional targeted inactivation strategy in the mouse. We found that lack of Rax expression prior to embryonic day 8.5 (E8.5) caused a general underdevelopment of the hypothalamic neuroepithelium, while inactivation at later timepoints had little effect. The early absence of Rax impaired neurogenesis and prevented the expression of molecular markers of the dorsomedial hypothalamus, including neuropeptides Proopiomelanocortin and Somatostatin. Interestingly, the expression domains of genes expressed in the ventromedial hypothalamus and infundibulum invaded dorsal hypothalamic territory, showing that Rax is needed for the proper dorsoventral patterning of the developing medial hypothalamus. The phenotypes caused by the early loss of Rax are similar to those of eliminating the expression of the morphogen Sonic hedgehog (Shh) specifically from the hypothalamus. Consistent with this similarity in phenotypes, we observed that Shh and Rax are coexpressed in the rostral forebrain at late head fold stages and that loss of Rax caused a downregulation of Shh expression in the dorsomedial portion of the hypothalamus.


Asunto(s)
Proteínas del Ojo/fisiología , Proteínas de Homeodominio/fisiología , Hipotálamo/embriología , Factores de Transcripción/fisiología , Animales , Tipificación del Cuerpo , Desarrollo Embrionario/genética , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Factores de Transcripción/genética
15.
Am J Physiol Endocrinol Metab ; 311(6): E974-E988, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802964

RESUMEN

We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage.


Asunto(s)
Adipocitos/metabolismo , Hepatocitos/metabolismo , Hiperprolactinemia/genética , Hígado/metabolismo , Obesidad/genética , Receptores de Dopamina D2/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Ensayo de Inmunoadsorción Enzimática , Hígado Graso/genética , Hígado Graso/metabolismo , Femenino , Expresión Génica , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis/genética , Hiperprolactinemia/metabolismo , Inmunohistoquímica , Insulina/metabolismo , Lactotrofos/metabolismo , Lipogénesis/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Obesidad/metabolismo , Radioinmunoensayo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Prolactina/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba
16.
Vertex ; XXVII(129): 368-373, 2016 Sep.
Artículo en Español | MEDLINE | ID: mdl-28282074

RESUMEN

Epigenetics is the branch of genetics that studies the dynamic relationship between stable genotypes and varying phenotypes. To this end, epigenetics aims to discover the molecular mechanisms that explain how different nutrients and hormones, environmental changes, and emotional, social and cognitive experiences modify gene expression and behaviors, even permanently so. Psychiatry has learned that diseases with strong genetic predisposition, such as schizophrenia, show a concordance of around 50% between monozygotic twins, thus evidencing the importance of the genetic background and the presence of environmental variables that stimulate or block phenotypic development. The interest in epigenetics has increased during the last few years due to fundamental discoveries made in molecular and behavioral genetics, although within this framework factual knowledge coexists with fictional expectations and wrong concepts. Is it possible that epigenetic variants modify temperament and human behavior? May abused or neglected children develop long-lasting epigenetic marks in their DNA? May bipolar states correlate with different epigenetic signatures? Studying these subjects in not an easy task, but experiments performed in lab animals suggest that these conjectures are reasonable, although there is still a long distance between hypotheses and scientifically proven facts.


Asunto(s)
Epigénesis Genética , Epigenómica , Genoma Humano , Genética Conductual , Histonas , Humanos
17.
J Neurosci ; 33(13): 5834-42, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23536095

RESUMEN

Competition between adult males for limited resources such as food and receptive females is shaped by the male pattern of pituitary growth hormone (GH) secretion that determines body size and the production of urinary pheromones involved in male-to-male aggression. In the brain, dopamine (DA) provides incentive salience to stimuli that predict the availability of food and sexual partners. Although the importance of the GH axis and central DA neurotransmission in social dominance and fitness is clearly appreciated, the two systems have always been studied unconnectedly. Here we conducted a cell-specific genetic dissection study in conditional mutant mice that selectively lack DA D2 receptors (D2R) from pituitary lactotropes (lacDrd2KO) or neurons (neuroDrd2KO). Whereas lacDrd2KO mice developed a normal GH axis, neuroDrd2KO mice displayed fewer somatotropes; reduced hypothalamic Ghrh expression, pituitary GH content, and serum IGF-I levels; and exhibited reduced body size and weight. As a consequence of a GH axis deficit, neuroDrd2KO adult males excreted low levels of major urinary proteins and their urine failed to promote aggression and territorial behavior in control male challengers, in contrast to the urine taken from control adult males. These findings reveal that central D2Rs mediate a neuroendocrine-exocrine cascade that controls the maturation of the GH axis and downstream signals that are critical for fitness, social dominance, and competition between adult males.


Asunto(s)
Tamaño Corporal/fisiología , Hormona del Crecimiento/metabolismo , Hipófisis/metabolismo , Prolactina/metabolismo , Receptores de Dopamina D2/metabolismo , Análisis de Varianza , Animales , Benzamidas/farmacocinética , Tamaño Corporal/efectos de los fármacos , Tamaño Corporal/genética , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Estudios de Casos y Controles , Catatonia/inducido químicamente , Catatonia/metabolismo , Antagonistas de Dopamina/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Femenino , Haloperidol/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas de Filamentos Intermediarios/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Nestina , Oligodesoxirribonucleótidos Antisentido/farmacología , Feromonas/orina , Hipófisis/efectos de los fármacos , Prolactina/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas/metabolismo , Radioinmunoensayo , Receptores de Dopamina D2/deficiencia , Receptores de Dopamina D2/genética , Predominio Social , Territorialidad , Tritio/farmacocinética
18.
J Neurosci ; 33(1): 286-91, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23283341

RESUMEN

Longevity is influenced by genetic and environmental factors. The brain's dopamine system may be particularly relevant, since it modulates traits (e.g., sensitivity to reward, incentive motivation, sustained effort) that impact behavioral responses to the environment. In particular, the dopamine D4 receptor (DRD4) has been shown to moderate the impact of environments on behavior and health. We tested the hypothesis that the DRD4 gene influences longevity and that its impact is mediated through environmental effects. Surviving participants of a 30-year-old population-based health survey (N = 310; age range, 90-109 years; the 90+ Study) were genotyped/resequenced at the DRD4 gene and compared with a European ancestry-matched younger population (N = 2902; age range, 7-45 years). We found that the oldest-old population had a 66% increase in individuals carrying the DRD4 7R allele relative to the younger sample (p = 3.5 × 10(-9)), and that this genotype was strongly correlated with increased levels of physical activity. Consistent with these results, DRD4 knock-out mice, when compared with wild-type and heterozygous mice, displayed a 7-9.7% decrease in lifespan, reduced spontaneous locomotor activity, and no lifespan increase when reared in an enriched environment. These results support the hypothesis that DRD4 gene variants contribute to longevity in humans and in mice, and suggest that this effect is mediated by shaping behavioral responses to the environment.


Asunto(s)
Genotipo , Longevidad/genética , Receptores de Dopamina D4/genética , Adolescente , Adulto , Anciano de 80 o más Años , Alelos , Animales , Niño , Femenino , Frecuencia de los Genes , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Actividad Motora/genética , Población Blanca/genética
19.
Mol Biol Evol ; 30(6): 1239-51, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23486611

RESUMEN

Transposable elements (TEs) are mobile genetic sequences that can jump around the genome from one location to another, behaving as genomic parasites. TEs have been particularly effective in colonizing mammalian genomes, and such heavy TE load is expected to have conditioned genome evolution. Indeed, studies conducted both at the gene and genome levels have uncovered TE insertions that seem to have been co-opted--or exapted--by providing transcription factor binding sites (TFBSs) that serve as promoters and enhancers, leading to the hypothesis that TE exaptation is a major factor in the evolution of gene regulation. Here, we critically review the evidence for exaptation of TE-derived sequences as TFBSs, promoters, enhancers, and silencers/insulators both at the gene and genome levels. We classify the functional impact attributed to TE insertions into four categories of increasing complexity and argue that so far very few studies have conclusively demonstrated exaptation of TEs as transcriptional regulatory regions. We also contend that many genome-wide studies dealing with TE exaptation in recent lineages of mammals are still inconclusive and that the hypothesis of rapid transcriptional regulatory rewiring mediated by TE mobilization must be taken with caution. Finally, we suggest experimental approaches that may help attributing higher-order functions to candidate exapted TEs.


Asunto(s)
Elementos Transponibles de ADN , Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Línea Celular , Embrión de Mamíferos , Elementos de Facilitación Genéticos , Humanos , Ratones , Filogenia
20.
Proc Natl Acad Sci U S A ; 108(37): 15270-5, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21876128

RESUMEN

The proopiomelanocortin gene (POMC) is expressed in a group of neurons present in the arcuate nucleus of the hypothalamus. Neuron-specific POMC expression in mammals is conveyed by two distal enhancers, named nPE1 and nPE2. Previous transgenic mouse studies showed that nPE1 and nPE2 independently drive reporter gene expression to POMC neurons. Here, we investigated the evolutionary mechanisms that shaped not one but two neuron-specific POMC enhancers and tested whether nPE1 and nPE2 drive identical or complementary spatiotemporal expression patterns. Sequence comparison among representative genomes of most vertebrate classes and mammalian orders showed that nPE1 is a placental novelty. Using in silico paleogenomics we found that nPE1 originated from the exaptation of a mammalian-apparent LTR retrotransposon sometime between the metatherian/eutherian split (147 Mya) and the placental mammal radiation (≈ 90 Mya). Thus, the evolutionary origin of nPE1 differs, in kind and time, from that previously demonstrated for nPE2, which was exapted from a CORE-short interspersed nucleotide element (SINE) retroposon before the origin of prototherians, 166 Mya. Transgenic mice expressing the fluorescent markers tomato and EGFP driven by nPE1 or nPE2, respectively, demonstrated coexpression of both reporter genes along the entire arcuate nucleus. The onset of reporter gene expression guided by nPE1 and nPE2 was also identical and coincidental with the onset of Pomc expression in the presumptive mouse diencephalon. Thus, the independent exaptation of two unrelated retroposons into functional analogs regulating neuronal POMC expression constitutes an authentic example of convergent molecular evolution of cell-specific enhancers.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Evolución Molecular , Mamíferos/genética , Neuronas/metabolismo , Retroelementos/genética , Animales , Secuencia de Bases , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros/genética , Humanos , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Neuronas/citología , Filogenia , Placenta/metabolismo , Embarazo , Proopiomelanocortina/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA