Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Physiol Plant ; 168(4): 963-972, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31642522

RESUMEN

We have proposed that rising atmospheric CO2 concentrations inhibit malate production in chloroplasts and thus impede assimilation of nitrate into protein in shoots of C3 plants, a phenomenon that will strongly influence primary productivity and food security under the environmental conditions anticipated during the next few decades. Although hundreds of studies support this proposal, several publications in 2018 and 2019 purport to present counterevidence. The following study evaluates these publications as well as presents new data that elevated CO2 enhances root nitrate assimilation in wheat and Arabidopsis while it inhibits shoot nitrate assimilation.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/química , Nitratos/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Arabidopsis/metabolismo , Nitrógeno , Triticum/metabolismo
2.
J Exp Bot ; 68(10): 2611-2625, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011716

RESUMEN

Critical for predicting the future of primary productivity is a better understanding of plant responses to rising atmospheric carbon dioxide (CO2) concentration. This review considers recent results on the role of the inorganic nitrogen (N) forms nitrate (NO3-) and ammonium (NH4+) in determining the responses of wheat and Arabidopsis to elevated atmospheric CO2 concentration. Here, we identify four key issues: (i) the possibility that different plant species respond similarly to elevated CO2 if one accounts for the N form that they are using; (ii) the major influence that plant-soil N interactions have on plant responses to elevated CO2; (iii) the observation that elevated CO2 may favor the uptake of one N form over others; and (iv) the finding that plants receiving NH4+ nutrition respond more positively to elevated CO2 than those receiving NO3- nutrition because elevated CO2 inhibits the assimilation of NO3- in shoots of C3 plants. We conclude that the form and amount of N available to plants from the rhizosphere and plant preferences for the different N forms are essential for predicting plant responses to elevated CO2.


Asunto(s)
Compuestos de Amonio/metabolismo , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Nitratos/metabolismo , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA