Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Clin Transl Radiat Oncol ; 39: 100561, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36594078

RESUMEN

We conducted a prospective pilot study evaluating the feasibility of same day MRI-only simulation and treatment with MRI-guided adaptive palliative radiotherapy (MAP-RT) for urgent palliative indications (NCT#03824366). All (16/16) patients were able to complete 99% of their first on-table attempted fractions, and no grades 3-5 toxicities occurred.

2.
Materials (Basel) ; 14(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199518

RESUMEN

An evaluation of hydrothermal liquefaction (HTL) char is investigated in this work. Morphological studies, N2 adsorption behavior, FTIR analysis, thermal behavior, and elemental composition are studied. The HTL char yield showed an increase with higher operating temperatures. It increased from 11.02% to 33% when the temperature increased from 573 K to 623 K. At lower temperatures, the residence time showed an impact on the yield, while close to the critical point, residence time became less impactful. Elemental analysis showed that both higher operating temperatures and longer residence times increased the nitrogen content of the chars from 0.32% to 0.51%. FTIR analysis suggested the char became more aromatic with the higher temperatures. The aliphatic groups present diminished drastically with the increasing temperature. Residence time did not show a significant impact as much as the temperature when considering the functional group elimination. An increase in operating temperatures and residence times produced thermally stable chars. HTL char produced at the lowest operating temperature and showed both the highest surface area and pore volume. When temperature and residence time increase, more polyaromatic char is produced due to carbonization.

3.
Bioresour Technol ; 129: 402-10, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23262018

RESUMEN

Initial process studies carried out in Aspen Plus on an integrated thermochemical conversion process are presented herein. In the simulations, a hydrothermal liquefaction (HTL) plant is combined with a biogas plant (BP), such that the digestate from the BP is converted to a biocrude in the HTL process. This biorefinery concept offers a sophisticated and sustainable way of converting organic residuals into a range of high-value biofuel streams in addition to combined heat and power (CHP) production. The primary goal of this study is to provide an initial estimate of the feasibility of such a process. By adding a diesel-quality-fuel output to the process, the product value is increased significantly compared to a conventional BP. An input of 1000 kg h(-1) manure delivers approximately 30-38 kg h(-1) fuel and 38-61 kg h(-1) biogas. The biogas can be used to upgrade the biocrude, to supply the gas grid or for CHP. An estimated 62-84% of the biomass energy can be recovered in the biofuels.


Asunto(s)
Biocombustibles , Suministros de Energía Eléctrica , Calefacción/instrumentación , Energía Renovable , Diseño de Equipo , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA