Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Geobiology ; 18(5): 619-640, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32336004

RESUMEN

Digitate siliceous hot spring deposits are a form of biomediated sinter that is relatively common in the Taupo Volcanic Zone (TVZ), New Zealand, and elsewhere on Earth. Such deposits have gained prominence recently because of their morphological similarity to opaline silica rocks of likely hot spring origin found by the Spirit rover on Mars and the consequent implications for potential biosignatures there. Here, we investigate the possible relationship between microbial community composition and morphological diversity among digitate structures from actively forming siliceous hot spring sinters depositing subaerially in shallow discharge channels and around pool rims at several physicochemically distinct geothermal fields in the TVZ. The TVZ digitate sinters range in morphologic subtype from knobby to spicular, and are shown to be microstromatolites that grow under varied pH ranges, temperatures, and water chemistries. Scanning electron microscopy and molecular analyses revealed that TVZ digitate sinters are intimately associated with a diverse array of bacterial, archaeal and eukaryotic micro-organisms, and for most digitate structures the diversity and quantity of prokaryotes was higher than that of eukaryotes. However, microbial community composition was not correlated with morphologic subtypes of digitate sinter, and observations provided limited evidence that pH (acidic versus alkali) affects morphology. Instead, results suggest hydrodynamics may be an important factor influencing variations in morphology, while water chemistry, pH, and temperature are strong drivers of microbial composition and diversity.


Asunto(s)
Manantiales de Aguas Termales , Microbiota , Archaea , Bacterias , Calor , Nueva Zelanda
2.
Astrobiology ; 20(4): 537-551, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32155343

RESUMEN

Hot spring environments are commonly dominated by silica sinters that precipitate by the rapid cooling of silica-saturated fluids and the activity of microbial communities. However, the potential for preservation of organic traces of life in silica sinters back through time is not well understood. This is important for the exploration of early life on Earth and possibly Mars. Most previous studies have focused on physical preservation in samples <900 years old, with only a few focused on organic biomarkers. In this study, we investigate the organic geochemistry of hot spring samples from El Tatio, Chile and the Taupo Volcanic Zone, with ages varying from modern to ∼9.4 ka. Results show that all samples contain opaline silica and contain hydrocarbons that are indicative of a cyanobacterial origin. A ∼3 ka recrystallized, quartz-bearing sample also contains traces of cyanobacterial biomarkers. No aromatic compounds were detected in a ∼9.4 ka opal-A sample or in a modern sinter breccia sample. All other samples contain naphthalene, with one sample also containing other polyaromatic hydrocarbons. These aromatic hydrocarbons have a thermally mature distribution that is perhaps reflective of geothermal fluids migrating from deep, rather than surface, reservoirs. These data show that hot spring sinters can preserve biomolecules from the local microbial community, and that crystallinity rather than age may be the determining factor in their preservation. This research provides support for the exploration for biomolecules in opaline silica deposits on Mars.


Asunto(s)
Fósiles , Sedimentos Geológicos/química , Manantiales de Aguas Termales , Hidrocarburos Aromáticos/análisis , Dióxido de Silicio/análisis , Chile , Cianobacterias , Planeta Tierra , Marte , Origen de la Vida , Cuarzo/análisis
3.
Astrobiology ; 20(4): 475-499, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31621375

RESUMEN

The origin and age of opaline silica deposits discovered by the Spirit rover adjacent to the Home Plate feature in the Columbia Hills of Gusev crater remains debated, in part because of their proximity to sulfur-rich soils. Processes related to fumarolic activity and to hot springs and/or geysers are the leading candidates. Both processes are known to produce opaline silica on Earth, but with differences in composition, morphology, texture, and stratigraphy. Here, we incorporate new and existing observations of the Home Plate region with observations from field and laboratory work to address the competing hypotheses. The results, which include new evidence for a hot spring vent mound, demonstrate that a volcanic hydrothermal system manifesting both hot spring/geyser and fumarolic activity best explains the opaline silica rocks and proximal S-rich materials, respectively. The opaline silica rocks most likely are sinter deposits derived from hot spring activity. Stratigraphic evidence indicates that their deposition occurred before the emplacement of the volcaniclastic deposits comprising Home Plate and nearby ridges. Because sinter deposits throughout geologic history on Earth preserve evidence for microbial life, they are a key target in the search for ancient life on Mars.


Asunto(s)
Manantiales de Aguas Termales , Marte , Dióxido de Silicio/análisis , Chile , Planeta Tierra , Medio Ambiente Extraterrestre , Sedimentos Geológicos/química , Espectrofotometría Infrarroja , Azufre , Utah , Erupciones Volcánicas
4.
Nat Commun ; 7: 13554, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27853166

RESUMEN

The Mars rover Spirit encountered outcrops and regolith composed of opaline silica (amorphous SiO2·nH2O) in an ancient volcanic hydrothermal setting in Gusev crater. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate opaline silica structures was not recognized. Here we report remarkably similar features within active hot spring/geyser discharge channels at El Tatio in northern Chile, where halite-encrusted silica yields infrared spectra that are the best match yet to spectra from Spirit. Furthermore, we show that the nodular and digitate silica structures at El Tatio that most closely resemble those on Mars include complex sedimentary structures produced by a combination of biotic and abiotic processes. Although fully abiotic processes are not ruled out for the Martian silica structures, they satisfy an a priori definition of potential biosignatures.

5.
Science ; 329(5990): 421-4, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20522738

RESUMEN

Decades of speculation about a warmer, wetter Mars climate in the planet's first billion years postulate a denser CO2-rich atmosphere than at present. Such an atmosphere should have led to the formation of outcrops rich in carbonate minerals, for which evidence has been sparse. Using the Mars Exploration Rover Spirit, we have now identified outcrops rich in magnesium-iron carbonate (16 to 34 weight percent) in the Columbia Hills of Gusev crater. Its composition approximates the average composition of the carbonate globules in martian meteorite ALH 84001. The Gusev carbonate probably precipitated from carbonate-bearing solutions under hydrothermal conditions at near-neutral pH in association with volcanic activity during the Noachian era.


Asunto(s)
Carbonatos , Marte , Agua , Atmósfera , Dióxido de Carbono , Carbonatos/química , Clima , Medio Ambiente Extraterrestre , Compuestos Ferrosos , Magnesio , Meteoroides , Nave Espacial , Temperatura
6.
Science ; 300(5628): 2056-61, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12791998

RESUMEN

The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.


Asunto(s)
Marte , Dióxido de Carbono , Medio Ambiente Extraterrestre , Sedimentos Geológicos , Fenómenos Geológicos , Geología , Estaciones del Año , Temperatura , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA