Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(30): 9382-7, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170331

RESUMEN

The mechanisms by which poikilothermic organisms ensure that biological processes are robust to temperature changes are largely unknown. Temperature compensation, the ability of circadian rhythms to maintain a relatively constant period over the broad range of temperatures resulting from seasonal fluctuations in environmental conditions, is a defining property of circadian networks. Temperature affects the alternative splicing (AS) of several clock genes in fungi, plants, and flies, but the splicing factors that modulate these effects to ensure clock accuracy throughout the year remain to be identified. Here we show that GEMIN2, a spliceosomal small nuclear ribonucleoprotein assembly factor conserved from yeast to humans, modulates low temperature effects on a large subset of pre-mRNA splicing events. In particular, GEMIN2 controls the AS of several clock genes and attenuates the effects of temperature on the circadian period in Arabidopsis thaliana. We conclude that GEMIN2 is a key component of a posttranscriptional regulatory mechanism that ensures the appropriate acclimation of plants to daily and seasonal changes in temperature conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas del Complejo SMN/fisiología , Empalme Alternativo , Secuencia de Aminoácidos , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Ritmo Circadiano , Análisis por Conglomerados , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Prueba de Complementación Genética , Estudio de Asociación del Genoma Completo , Humanos , Intrones , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Hojas de la Planta/fisiología , ARN Nuclear Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas del Complejo SMN/genética , Homología de Secuencia de Aminoácido , Empalmosomas/fisiología , Temperatura , Transcripción Genética
2.
Nature ; 468(7320): 112-6, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-20962777

RESUMEN

Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the day-night cycle. Post-transcriptional regulation is emerging as an important component of circadian networks, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that PROTEIN ARGININE METHYL TRANSFERASE 5 (PRMT5), which transfers methyl groups to arginine residues present in histones and Sm spliceosomal proteins, links the circadian clock to the control of alternative splicing in plants. Mutations in PRMT5 impair several circadian rhythms in Arabidopsis thaliana and this phenotype is caused, at least in part, by a strong alteration in alternative splicing of the core-clock gene PSEUDO RESPONSE REGULATOR 9 (PRR9). Furthermore, genome-wide studies show that PRMT5 contributes to the regulation of many pre-messenger-RNA splicing events, probably by modulating 5'-splice-site recognition. PRMT5 expression shows daily and circadian oscillations, and this contributes to the mediation of the circadian regulation of expression and alternative splicing of a subset of genes. Circadian rhythms in locomotor activity are also disrupted in dart5-1, a mutant affected in the Drosophila melanogaster PRMT5 homologue, and this is associated with alterations in splicing of the core-clock gene period and several clock-associated genes. Our results demonstrate a key role for PRMT5 in the regulation of alternative splicing and indicate that the interplay between the circadian clock and the regulation of alternative splicing by PRMT5 constitutes a common mechanism that helps organisms to synchronize physiological processes with daily changes in environmental conditions.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteína Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Secuencia de Bases , Relojes Circadianos/genética , Ritmo Circadiano/genética , Oscuridad , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Luz , Metilación , Mutación , Proteínas Circadianas Period/genética , Fenotipo , Proteína Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Empalmosomas/metabolismo , Factores de Transcripción/genética
3.
Proc Natl Acad Sci U S A ; 110(29): 12120-5, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818596

RESUMEN

Light signaling pathways and the circadian clock interact to help organisms synchronize physiological and developmental processes with periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Here we describe a family of night light-inducible and clock-regulated genes (LNK) that play a key role linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. A genomewide transcriptome analysis revealed that most light-induced genes respond more strongly to light during the subjective day, which is consistent with the diurnal nature of most physiological processes in plants. However, a handful of genes, including the homologous genes LNK1 and LNK2, are more strongly induced by light in the middle of the night, when the clock is most responsive to this signal. Further analysis revealed that the morning phased LNK1 and LNK2 genes control circadian rhythms, photomorphogenic responses, and photoperiodic dependent flowering, most likely by regulating a subset of clock and flowering time genes in the afternoon. LNK1 and LNK2 themselves are directly repressed by members of the TIMING OF CAB1 EXPRESSION/PSEUDO RESPONSE REGULATOR family of core-clock genes in the afternoon and early night. Thus, LNK1 and LNK2 integrate early light signals with temporal information provided by core oscillator components to control the expression of afternoon genes, allowing plants to keep track of seasonal changes in day length.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Fototransducción/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Relojes Circadianos/genética , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Fototransducción/genética , Análisis por Micromatrices , Fotoperiodo , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Estaciones del Año , Factores de Transcripción/metabolismo
4.
Mol Plant ; 13(3): 363-385, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32068156

RESUMEN

Optimizing the perception of external cues and regulating physiology accordingly help plants to cope with the constantly changing environmental conditions to which they are exposed. An array of photoreceptors and intricate signaling pathways allow plants to convey the surrounding light information and synchronize an endogenous timekeeping system known as the circadian clock. This biological clock integrates multiple cues to modulate a myriad of downstream responses, timing them to occur at the best moment of the day and the year. Notably, the mechanism underlying entrainment of the light-mediated clock is not clear. This review addresses known interactions between the light-signaling and circadian-clock networks, focusing on the role of light in clock entrainment and known molecular players in this process.


Asunto(s)
Relojes Circadianos/efectos de la radiación , Luz , Arabidopsis/citología , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Retroalimentación Fisiológica/efectos de la radiación , Transducción de Señal/efectos de la radiación
5.
Plant Physiol ; 150(2): 1083-92, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19363093

RESUMEN

In open places, plants are exposed to higher fluence rates of photosynthetically active radiation and to higher red to far-red ratios than under the shade of neighbor plants. High fluence rates are known to increase stomata density. Here we show that high, compared to low, red to far-red ratios also increase stomata density in Arabidopsis (Arabidopsis thaliana). High red to far-red ratios increase the proportion of phytochrome B (phyB) in its active form and the phyB mutant exhibited a constitutively low stomata density. phyB increased the stomata index (the ratio between stomata and epidermal cells number) and the level of anphistomy (by increasing stomata density more intensively in the adaxial than in the abaxial face). phyB promoted the expression of FAMA and TOO MANY MOUTHS genes involved in the regulation of stomata development in young leaves. Increased stomata density resulted in increased transpiration per unit leaf area. However, phyB promoted photosynthesis rates only at high fluence rates of photosynthetically active radiation. In accordance to these observations, phyB reduced long-term water-use efficiency estimated by the analysis of isotopic discrimination against (13)CO(2). We propose a model where active phyB promotes stomata differentiation in open places, allowing plants to take advantage of the higher irradiances at the expense of a reduction of water-use efficiency, which is compensated by a reduced leaf area.


Asunto(s)
Arabidopsis/fisiología , Fotosíntesis , Fitocromo B/metabolismo , Agua/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Luz , Fotosíntesis/efectos de la radiación , Estomas de Plantas/metabolismo , Estomas de Plantas/efectos de la radiación , Transpiración de Plantas/efectos de la radiación , Transducción de Señal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA