Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Blood Adv ; 2(8): 848-858, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29661755

RESUMEN

The outlook for patients with refractory/relapsed acute myeloid leukemia (AML) remains poor, with conventional chemotherapeutic treatments often associated with unacceptable toxicities, including severe infections due to profound myelosuppression. Thus there exists an urgent need for more effective agents to treat AML that confer high therapeutic indices and favorable tolerability profiles. Because of its high expression on leukemic blast and stem cells compared with normal hematopoietic stem cells and progenitors, CD123 has emerged as a rational candidate for molecularly targeted therapeutic approaches in this disease. Here we describe the development and preclinical characterization of a CD123-targeting antibody-drug conjugate (ADC), IMGN632, that comprises a novel humanized anti-CD123 antibody G4723A linked to a recently reported DNA mono-alkylating payload of the indolinobenzodiazepine pseudodimer (IGN) class of cytotoxic compounds. The activity of IMGN632 was compared with X-ADC, the ADC utilizing the G4723A antibody linked to a DNA crosslinking IGN payload. With low picomolar potency, both ADCs reduced viability in AML cell lines and patient-derived samples in culture, irrespective of their multidrug resistance or disease status. However, X-ADC exposure was >40-fold more cytotoxic to the normal myeloid progenitors than IMGN632. Of particular note, IMGN632 demonstrated potent activity in all AML samples at concentrations well below levels that impacted normal bone marrow progenitors, suggesting the potential for efficacy in AML patients in the absence of or with limited myelosuppression. Furthermore, IMGN632 demonstrated robust antitumor efficacy in multiple AML xenograft models. Overall, these findings identify IMGN632 as a promising candidate for evaluation as a novel therapy in AML.


Asunto(s)
Inmunoconjugados/uso terapéutico , Subunidad alfa del Receptor de Interleucina-3/inmunología , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Xenoinjertos , Humanos , Inmunoconjugados/inmunología , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Tumorales Cultivadas
2.
Biochemistry ; 45(12): 3887-97, 2006 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-16548516

RESUMEN

Structural perturbations in cytochrome P450cam (CYP101) induced by the soluble fragment of cytochrome b5, a nonphysiological effector of CYP101, were investigated by NMR spectroscopy and compared with the perturbations induced by the physiological reductant and effector putidaredoxin (Pdx). Chemical shifts of perdeuterated [U-15N]CYP101 backbone amide (NH) resonances were monitored as a function of cytochrome b5 concentration by 1H-15N TROSY-HSQC experiments. The association of cytochrome b5 with the reduced CYP101-camphor-carbon monoxide complex (CYP-S-CO) perturbs many of the same resonances that Pdx does, including regions of the CYP101 molecule implicated in substrate access and orientation. The perturbations are smaller in magnitude than those observed with Pdx(r) due to a lower binding affinity (a Kd of 13 +/- 3 mM, for the reduced cytochrome b5-CYP-S-CO complex compared to a Kd of 26 +/- 12 microM for the Pdx-CYP-S-CO complex). The results are in accord with our previous suggestion that the observed perturbations are related to effector activity and support the proposal that the primary role of the effector is to populate the active conformation of CYP101 to prevent uncoupling [Pochapsky, S. S., et al. (2003) Biochemistry 42, 5649-5656]. A titratable perturbation is observed at the 1H resonance of the 8-CH3 group of CYP101-bound camphor upon addition of cytochrome b5, a phenomenon also associated with the formation of the CYP101 x Pdx complex, albeit with larger perturbations [Wei, J. Y., et al. (2005) J. Am. Chem. Soc. 127, 6974-6976]. The effector activity of the particular rat cytochrome b5 construct used for NMR studies was confirmed by monitoring the enzymatic turnover that yielded 5-exo-hydroxycamphor using gas chromatography and mass spectrometry. Finally, the common features of the perturbations observed in the NMR spectra of the two complexes are discussed, and their relevance to effector activity is considered.


Asunto(s)
Alcanfor 5-Monooxigenasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromos b5/metabolismo , Ferredoxinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Secuencia de Aminoácidos , Animales , Alcanfor 5-Monooxigenasa/química , Sistema Enzimático del Citocromo P-450/química , Citocromos b5/química , Oxigenasas de Función Mixta/química , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Ratas , Especificidad por Sustrato
3.
Appl Microbiol Biotechnol ; 66(4): 422-9, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15290130

RESUMEN

Previous work showed that random mutagenesis produced a mutant of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 containing the V106A substitution in the hydroxylase alpha-subunit (TomA3) that changed the color of the cell suspension from wild-type brown to green in rich medium. Here, DNA shuffling was used to isolate a random TOM mutant that turned blue due to mutation TomA3 A113V. To better understand the TOM reaction mechanism, we studied the specificity of indole hydroxylation using a spectrum of colored TOM mutants expressed in Escherichia coli TG1 and formed as a result of saturation mutagenesis at TomA3 positions A113 and V106. Colonies expressing these altered enzymes ranged in color from blue through green and purple to orange; and the enzyme products were identified using thin-layer chromatography, high performance liquid chromatography, and liquid chromatography-mass spectroscopy. Derived from the single TOM template, enzymes were identified that produced primarily isoindigo (wild-type TOM), indigo (A113V), indirubin (A113I), and isatin (A113H and V106A/A113G). The discovery that wild-type TOM formed isoindigo via C-2 hydroxylation of the indole pyrrole ring makes this the first oxygenase shown to form this compound. Variant TOM A113G was unable to form indigo, indirubin, or isoindigo (did not hydroxylate the indole pyrrole ring), but produced 4-hydroxyindole and unknown yellow compounds from C-4 hydroxylation of the indole benzene ring. Mutations at V106 in addition to A113G restored C-3 indole oxidation, so along with C-2 indole oxidation, isatin, indigo, and indirubin were formed. Other TomA3 V106/A113 mutants with hydrophobic, polar, or charged amino acids in place of the Val and/or Ala residues hydroxylated indole at the C-3 and C-2 positions, forming isatin, indigo, and indirubin in a variety of distributions. Hence, for the first time, a single enzyme was genetically modified to produce a wide range of colors from indole.


Asunto(s)
Burkholderia cepacia/enzimología , Burkholderia cepacia/genética , Indoles/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Secuencia de Bases , Dominio Catalítico/genética , Color , ADN Bacteriano/genética , Genes Bacterianos , Hidroxilación , Indoles/química , Oxigenasas de Función Mixta/química , Mutagénesis , Ingeniería de Proteínas
4.
J Biol Chem ; 280(1): 506-14, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15498762

RESUMEN

A primary goal of protein engineering is to control catalytic activity. Here we show that through mutagenesis of three active site residues, the catalytic activity of a multicomponent monooxygenase is altered so that it hydroxylates all three positions of toluene as well as both positions of naphthalene. Hence, for the first time, an enzyme has been engineered so that its regiospecific oxidation of a substrate can be controlled. Through the A107G mutation in the alpha-subunit of toluene para-monooxygenase, a variant was formed that hydroxylated toluene primarily at the ortho-position while converting naphthalene to 1-naphthol. Conversely, the A107T variant produced >98% p-cresol and p-nitrophenol from toluene and nitrobenzene, respectively, as well as produced 2-naphthol from naphthalene. The mutation I100S/G103S produced a toluene para-monooxygenase variant that formed 75% m-cresol from toluene and 100% m-nitrophenol from nitrobenzene; thus, for the first time a true meta-hydroxylating toluene monooxygenase was created.


Asunto(s)
Oxigenasas de Función Mixta , Ingeniería de Proteínas , Ralstonia/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Mutación , Oxidación-Reducción , Ralstonia/química , Alineación de Secuencia , Especificidad por Sustrato
5.
Appl Environ Microbiol ; 71(7): 3995-4003, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16000814

RESUMEN

DNA shuffling and saturation mutagenesis of positions F108, L190, I219, D235, and C248 were used to generate variants of the epoxide hydrolase of Agrobacterium radiobacter AD1 (EchA) with enhanced enantioselectivity and activity for styrene oxide and enhanced activity for 1,2-epoxyhexane and epoxypropane. EchA variant I219F has more than fivefold-enhanced enantioselectivity toward racemic styrene oxide, with the enantiomeric ratio value (E value) for the production of (R)-1-phenylethane-1,2-diol increased from 17 for the wild-type enzyme to 91, as well as twofold-improved activity for the production of (R)-1-phenylethane-1,2-diol (1.96 +/- 0.09 versus 1.04 +/- 0.07 micromol/min/mg for wild-type EchA). Computer modeling indicated that this mutation significantly alters (R)-styrene oxide binding in the active site. Another three variants from EchA active-site engineering, F108L/C248I, I219L/C248I, and F108L/I219L/C248I, also exhibited improved enantioselectivity toward racemic styrene oxide in favor of production of the corresponding diol in the (R) configuration (twofold enhancement in their E values). Variant F108L/I219L/C248I also demonstrated 10-fold- and 2-fold-increased activity on 5 mM epoxypropane (24 +/- 2 versus 2.4 +/- 0.3 micromol/min/mg for the wild-type enzyme) and 5 mM 1,2-epoxyhexane (5.2 +/- 0.5 versus 2.6 +/- 0.0 micromol/min/mg for the wild-type enzyme). Both variants L190F (isolated from a DNA shuffling library) and L190Y (created from subsequent saturation mutagenesis) showed significantly enhanced activity for racemic styrene oxide hydrolysis, with 4.8-fold (8.6 +/- 0.3 versus 1.8 +/- 0.2 micromol/min/mg for the wild-type enzyme) and 2.7-fold (4.8 +/- 0.8 versus 1.8 +/- 0.2 micromol/min/mg for the wild-type enzyme) improvements, respectively. L190Y also hydrolyzed 1,2-epoxyhexane 2.5 times faster than the wild-type enzyme.


Asunto(s)
Epóxido Hidrolasas/genética , Glicoles de Etileno/metabolismo , Ingeniería de Proteínas/métodos , Rhizobium/enzimología , Barajamiento de ADN , Epóxido Hidrolasas/química , Epóxido Hidrolasas/metabolismo , Compuestos Epoxi/metabolismo , Glicoles de Etileno/química , Cinética , Modelos Moleculares , Mutagénesis , Rhizobium/genética , Estereoisomerismo
6.
Environ Microbiol ; 6(5): 491-500, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15049922

RESUMEN

Aerobic, co-metabolic bioremediation of trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE) and other chlorinated ethenes with monooxygenase-expressing microorganisms is limited by the toxic epoxides produced as intermediates. A recombinant Escherichia coli strain less sensitive to the toxic effects of cis-DCE, TCE and trans-1,2-dichloroethylene (trans-DCE) degradation has been created by engineering a novel pathway consisting of eight genes including a DNA-shuffled toluene ortho-monooxygenase from Burkholderia cepacia G4 (TOM-Green), a newly discovered glutathione S-transferase (GST) from RhodococcusAD45 (IsoILR1), found to have activity towards epoxypropane and cis-DCE epoxide, and an overexpressed E. coli mutant gamma-glutamylcysteine synthetase (GSHI*). Along with IsoILR1, another new RhodococcusAD45 GST, IsoILR2, was cloned that lacks activity towards cis-DCE epoxide and differs from IsoILR1 by nine amino acids. The recombinant strain in which TOM-Green and IsoILR1 were co-expressed on separate plasmids degraded 1.9-fold more cis-DCE compared with a strain that lacked IsoILR1. In the presence of IsoILR1 and TOM-Green, the addition of GSH1* resulted in a sevenfold increase in the intracellular GSH concentration and a 3.5-fold improvement in the cis-DCE degradation rate based on chloride released (2.1 +/- 0.1 versus 0.6 +/- 0.1 nmol min(-1) mg(-1) protein at 540 microM), a 1.8-fold improvement in the trans-DCE degradation rate (1.29 +/- 0.03 versus 0.71 +/- 0.04 nmol x min(-1) mg(-1) protein at 345 microM) and a 1.7-fold improvement in the TCE degradation rate (6.8 +/- 0.24 versus 4.1 +/- 0.16 nmol x min(-1) mg(-1) protein at 339 microM). For cis-DCE degradation with TOM-Green (based on substrate depletion), V(max) was 27 nmol x min(-1) mg(-1) protein with both IsoILR1 and GSHI* expressed compared with V(max) = 10 nmol x min(-1) mg(-1) protein for the GST(-)GSHI*(-) strain. In addition, cells expressing IsoILR1 and GSHI* grew 78% faster in rich medium than a strain lacking these two heterologous genes.


Asunto(s)
Biodegradación Ambiental , Etilenos/metabolismo , Glutamato-Cisteína Ligasa , Glutatión Transferasa , Hidrocarburos Clorados/metabolismo , Oxigenasas de Función Mixta , Ingeniería de Proteínas , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia cepacia/enzimología , Burkholderia cepacia/genética , Burkholderia cepacia/metabolismo , Contaminantes Ambientales/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Etilenos/química , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Hidrocarburos Clorados/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Rhodococcus/enzimología , Rhodococcus/genética , Alineación de Secuencia
7.
J Biol Chem ; 279(45): 46810-7, 2004 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-15347647

RESUMEN

Chlorinated ethenes are the most prevalent ground-water pollutants, and the toxic epoxides generated during their aerobic biodegradation limit the extent of transformation. Hydrolysis of the toxic epoxide by epoxide hydrolases represents the major biological detoxification strategy; however, chlorinated epoxyethanes are not accepted by known bacterial epoxide hydrolases. Here, the epoxide hydrolase from Agrobacterium radiobacter AD1 (EchA), which enables growth on epichlorohydrin, was tuned to accept cis-1,2-dichloroepoxyethane as a substrate by accumulating beneficial mutations from three rounds of saturation mutagenesis at three selected active site residues, Phe-108, Ile-219, and Cys-248 (no beneficial mutations were found at position Ile-111). The EchA F108L/I219L/C248I variant coexpressed with a DNA-shuffled toluene ortho-monooxygenase, which initiates attack on the chlorinated ethene, enhanced the degradation of cis-dichloroethylene (cis-DCE) an infinite extent compared with wild-type EchA at low concentrations (6.8 microm) and up to 10-fold at high concentrations (540 microm). EchA variants with single mutations (F108L, I219F, or C248I) enhanced cis-DCE mineralization 2.5-fold (540 microm), and EchA variants with double mutations, I219L/C248I and F108L/C248I, increased cis-DCE mineralization 4- and 7-fold, respectively (540 microm). For complete degradation of cis-DCE to chloride ions, the apparent Vmax/Km for the Escherichia coli strain expressing recombinant the EchA F108L/I219L/C248I variant was increased over 5-fold as a result of the evolution of EchA. The EchA F108L/I219L/C248I variant also had enhanced activity for 1,2-epoxyhexane (2-fold) and the natural substrate epichlorohydrin (6-fold).


Asunto(s)
Agrobacterium tumefaciens/enzimología , Dicloroetilenos/farmacología , Epóxido Hidrolasas/química , Oxigenasas de Función Mixta/química , Sitios de Unión , Dominio Catalítico , Cisteína/química , Dicloroetilenos/química , Epiclorhidrina/química , Epóxido Hidrolasas/metabolismo , Escherichia coli/metabolismo , Isoleucina/química , Cinética , Modelos Químicos , Modelos Moleculares , Mutagénesis , Mutagénesis Sitio-Dirigida , Oxígeno/metabolismo , Consumo de Oxígeno , Fenilalanina/química , Plásmidos/metabolismo , Análisis de Secuencia de ADN , Rayos X
8.
Appl Environ Microbiol ; 70(6): 3246-52, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15184118

RESUMEN

Directed evolution of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 previously created the hydroxylase alpha-subunit (TomA3) V106A variant (TOM-Green) with increased activity for both trichloroethylene degradation (twofold enhancement) and naphthalene oxidation (six-times-higher activity). In the present study, saturation mutagenesis was performed at position A106 with Escherichia coli TG1/pBS(Kan)TOMV106A to improve TOM activity for both chloroform degradation and naphthalene oxidation. Whole cells expressing the A106E variant had two times better naphthalene-to-1-naphthol activity than the wild-type cells (V(max) of 9.3 versus 4.5 nmol.min(-1).mg of protein(-1) and unchanged K(m)), and the regiospecificity of the A106E variant was unchanged, with 98% 1-naphthol formed, as was confirmed with high-pressure liquid chromatography. The A106E variant degrades its natural substrate toluene 63% faster than wild-type TOM does (2.12 +/- 0.07 versus 1.30 +/- 0.06 nmol.min(-1).mg of protein(-1) [mean +/- standard deviation]) at 91 microM and has a substantial decrease in regiospecificity, since o-cresol (50%), m-cresol (25%), and p-cresol (25%) are formed, in contrast to the 98% o-cresol formed by wild-type TOM. The A106E variant also has an elevated expression level compared to that of wild-type TOM, as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Another variant, the A106F variant, has 2.8-times-better chloroform degradation activity based on gas chromatography (V(max) of 2.61 versus 0.95 nmol.min(-1).mg of protein(-1) and unchanged K(m)) and chloride release (0.034 +/- 0.002 versus 0.012 +/- 0.001 nmol.min(-1).mg of protein(-1)). The A106F variant also was expressed at levels similar to those of wild-type TOM and 62%-better toluene oxidation activity than wild-type TOM (2.11 +/- 0.3 versus 1.30 +/- 0.06 nmol.min(-1).mg of protein(-1)). A shift in regiospecificity of toluene hydroxylation was also observed for the A106F variant, with o-cresol (28%), m-cresol (18%), and p-cresol (54%) being formed. Statistical analysis was used to estimate that 292 colonies must be screened for a 99% probability that all 64 codons were sampled during saturation mutagenesis.


Asunto(s)
Burkholderia cepacia/enzimología , Cloroformo/metabolismo , Oxigenasas de Función Mixta/genética , Mutagénesis , Naftoles/metabolismo , Sitios de Unión , Biodegradación Ambiental , Burkholderia cepacia/genética , Burkholderia cepacia/crecimiento & desarrollo , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Clonación Molecular , Codón , Electroforesis en Gel de Poliacrilamida , Biblioteca de Genes , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA