Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mater Horiz ; 11(20): 4987-4997, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39081221

RESUMEN

Large surface areas are important for enhancing mass and energy transfer in biological and technological processes. Bicontinuous interfacially jammed emulsion gels (bijels) increase the surface area between two fluids by intertwining them into particle stabilized networks. To facilitate efficient mass and energy exchange via the bijels' high surface area, the fluid networks need to be connected to their respective bulk phases. Here, we generate bijels between two bulk fluids and investigate the connections the bijel makes. We analyze these connections by investigating the colloidal stability, interfacial rheology and mass transfer dynamics during bijel formation. To this end, we employ confocal and electron microscopy, as well as dynamic light scattering, pendant drop analysis, electrophoretic mobility measurements and diffusion simulations. We find that the connections the bijel makes to the bulk fluid can be disrupted by severe colloidal aggregation and interruptions of the bicontinuous fluid network. However, the addition of alcohol to the bulk fluid moderates aggregation and allows undisturbed fluid network formation, facilitating open connections between bijel and bulk fluid. The unprecedented control of bijel pore connections from this research will be crucial for the application of bijels as separation membranes, electrochemical energy storage materials and chemical reactors.

2.
J Colloid Interface Sci ; 678(Pt A): 201-208, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39191099

RESUMEN

HYPOTHESIS: Functionalizing colloidal particles with oppositely charged surfactants is crucial for stabilizing emulsions, foams, all-liquid structures, and bijels. However, surfactants can reduce the attachment energy, the driving force for colloidal self-assembly at interfaces. An open question remains on how the inherent interfacial activity of cationic surfactants influences the interfacial rigidity of particle-laden interfaces. We hypothesize that charge screening among cationic surfactants regulates the rigidity of oil/water interfaces by reducing the attachment energy of nanoparticles. EXPERIMENTS: We investigate the interfacial rigidity of cetyltrimethylammonium bromide (CTAB) functionalized silica nanoparticles (Ludox® TMA) by analyzing the shape deformation of 1,4-butanediol diacrylate (BDA) droplets under varying salt and alcohol concentrations. The nanoparticle packing density is assessed using scanning electron microscopy. Attachment energy is characterized through interfacial tension measurements, three-phase contact angle analysis, and CTAB adsorption studies. We also examine the effects of interfacial rigidities on the structure of bijel films formed via roll-to-roll solvent transfer-induced phase separation (R2R-STrIPS) using confocal laser scanning microscopy. FINDINGS: Increasing salt and alcohol concentrations decrease the interfacial rigidity of CTAB-functionalized nanoparticle films by reducing the interfacial tension. The contact angle has a minor influence on the rigidity. These results indicate that CTAB charge screening weakens the nanoparticle attachment energy to the interface. Controlling the rigidity enables the mass production of bijel sheets with consistent flatness, which is crucial for their potential applications in catalysis, energy storage, tissue engineering, and filtration membranes.

3.
Anal Biochem ; 417(1): 149-55, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21708118

RESUMEN

Libraries composed of linear and cyclic peptides cannot fully represent the higher order structures of most antigenic sites. To map the binding site of ligands or antibodies, a larger part of the three-dimensional space should be sampled. Because parallel synthesis of large arrays of peptides on hydrogels is restricted to relatively small peptides, a simple and robust homodimeric helical system was chosen for antigen presentation. First, it was established in an heterodimeric system that the 26-mer peptide could be synthesized and that the helical coiled-coil peptides interact in the hydrogel in a predictable manner. Next, libraries of homodimeric coiled coils were synthesized into which the epitope was grafted. Using dedicated helical dimeric and trimeric coiled-coil libraries, the epitopes of two anti-HIV-1 gp41 monoclonal antibodies known to interact with helical structures were mapped at high resolution. These mappings precisely reflect existing X-ray data, and the arrays can be applied to lead identification, epitope mapping, and systematic analysis of amino acid contribution to coiled-coil systems.


Asunto(s)
Péptidos/análisis , Péptidos/química , Mapeo de Interacción de Proteínas/métodos , Secuencia de Aminoácidos , Anticuerpos Monoclonales/metabolismo , Biotina/metabolismo , Mapeo Epitopo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Solubilidad
4.
ACS Nano ; 14(10): 13146-13160, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32915541

RESUMEN

Despite recent advances, the synthesis of colloidal InSb quantum dots (QDs) remains underdeveloped, mostly due to the lack of suitable precursors. In this work, we use Lewis acid-base interactions between Sb(III) and In(III) species formed at room temperature in situ from commercially available compounds (viz., InCl3, Sb[NMe2]3 and a primary alkylamine) to obtain InSb adduct complexes. These complexes are successfully used as precursors for the synthesis of colloidal InSb QDs ranging from 2.8 to 18.2 nm in diameter by fast coreduction at sufficiently high temperatures (≥230 °C). Our findings allow us to propose a formation mechanism for the QDs synthesized in our work, which is based on a nonclassical nucleation event, followed by aggregative growth. This yields ensembles with multimodal size distributions, which can be fractionated in subensembles with relatively narrow polydispersity by postsynthetic size fractionation. InSb QDs with diameters below 7.0 nm have the zinc blende crystal structure, while ensembles of larger QDs (≥10 nm) consist of a mixture of wurtzite and zinc blende QDs. The QDs exhibit photoluminescence with small Stokes shifts and short radiative lifetimes, implying that the emission is due to band-edge recombination and that the direct nature of the bandgap of bulk InSb is preserved in InSb QDs. Finally, we constructed a sizing curve correlating the peak position of the lowest energy absorption transition with the QD diameters, which shows that the band gap of colloidal InSb QDs increases with size reduction following a 1/d dependence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA