Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(23): 232503, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905650

RESUMEN

We investigate the effects of two-body currents on magnetic dipole moments of medium-mass and heavy nuclei using the valence-space in-medium similarity renormalization group with chiral effective field theory interactions and currents. Focusing on near doubly magic nuclei from oxygen to bismuth, we have found that the leading two-body currents globally improve the agreement with experimental magnetic moments. Moreover, our results show the importance of multishell effects for ^{41}Ca, which suggest that the Z=N=20 gap in ^{40}Ca is not as robust as in ^{48}Ca. The increasing contribution of two-body currents in heavier systems is explained by the operator structure of the center-of-mass dependent Sachs term.

2.
Phys Rev Lett ; 128(2): 022502, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35089728

RESUMEN

Collinear laser spectroscopy is performed on the nickel isotopes ^{58-68,70}Ni, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii R_{c} are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction NNLO_{sat}, which allows an assessment of their accuracy. We find agreement with experiment in differential radii δ⟨r_{c}^{2}⟩ for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for NNLO_{sat}. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional Fy(Δr,HFB).

3.
Phys Rev Lett ; 127(3): 033001, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34328758

RESUMEN

Isotope shifts of ^{223-226,228}Ra^{19}F were measured for different vibrational levels in the electronic transition A^{2}Π_{1/2}←X^{2}Σ^{+}. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.

4.
Phys Rev Lett ; 124(13): 132502, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32302185

RESUMEN

We present the first laser spectroscopic measurement of the neutron-rich nucleus ^{68}Ni at the N=40 subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_{D} has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus ^{48}Ca. Three-particle-three-hole correlations in coupled-cluster theory substantially improve the description of the experimental data, which allows to constrain the neutron radius and neutron skin of ^{68}Ni.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA