Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glia ; 71(1): 5-35, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36308424

RESUMEN

It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.


Asunto(s)
Cannabinoides , Endocannabinoides , Endocannabinoides/metabolismo , Receptores de Cannabinoides/metabolismo , Transducción de Señal , Sistema Nervioso Central/metabolismo , Receptor Cannabinoide CB1
2.
J Neuroinflammation ; 18(1): 223, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34587978

RESUMEN

BACKGROUND: The complex pathophysiology of Alzheimer's disease (AD) hampers the development of effective treatments. Attempts to prevent neurodegeneration in AD have failed so far, highlighting the need for further clarification of the underlying cellular and molecular mechanisms. Neuroinflammation seems to play a crucial role in disease progression, although its specific contribution to AD pathogenesis remains elusive. We have previously shown that the modulation of the endocannabinoid system (ECS) renders beneficial effects in a context of amyloidosis, which triggers neuroinflammation. In the 5xFAD model, the genetic inactivation of the enzyme that degrades anandamide (AEA), the fatty acid amide hydrolase (FAAH), was associated with a significant amelioration of the memory deficit. METHODS: In this work, we use electrophysiology, flow cytometry and molecular analysis to evaluate the cellular and molecular mechanisms underlying the improvement associated to the increased endocannabinoid tone in the 5xFAD mouse- model. RESULTS: We demonstrate that the chronic enhancement of the endocannabinoid tone rescues hippocampal synaptic plasticity in the 5xFAD mouse model. At the CA3-CA1 synapse, both basal synaptic transmission and long-term potentiation (LTP) of synaptic transmission are normalized upon FAAH genetic inactivation, in a CB1 receptor (CB1R)- and TRPV1 receptor-independent manner. Dendritic spine density in CA1 pyramidal neurons, which is notably decreased in 6-month-old 5xFAD animals, is also restored. Importantly, we reveal that the expression of microglial factors linked to phagocytic activity, such as TREM2 and CTSD, and other factors related to amyloid beta clearance and involved in neuron-glia crosstalk, such as complement component C3 and complement receptor C3AR, are specifically upregulated in 5xFAD/FAAH-/- animals. CONCLUSION: In summary, our findings support the therapeutic potential of modulating, rather than suppressing, neuroinflammation in Alzheimer's disease. In our model, the long-term enhancement of the endocannabinoid tone triggered augmented microglial activation and amyloid beta phagocytosis, and a consequent reversal in the neuronal phenotype associated to the disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Amidohidrolasas/deficiencia , Péptidos beta-Amiloides/metabolismo , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/fisiología
3.
J Neuroinflammation ; 15(1): 158, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29793509

RESUMEN

BACKGROUND: Because of their low levels of expression and the inadequacy of current research tools, CB2 cannabinoid receptors (CB2R) have been difficult to study, particularly in the brain. This receptor is especially relevant in the context of neuroinflammation, so novel tools are needed to unveil its pathophysiological role(s). METHODS: We have generated a transgenic mouse model in which the expression of enhanced green fluorescent protein (EGFP) is under the control of the cnr2 gene promoter through the insertion of an Internal Ribosomal Entry Site followed by the EGFP coding region immediately 3' of the cnr2 gene and crossed these mice with mice expressing five familial Alzheimer's disease (AD) mutations (5xFAD). RESULTS: Expression of EGFP in control mice was below the level of detection in all regions of the central nervous system (CNS) that we examined. CB2R-dependent-EGFP expression was detected in the CNS of 3-month-old AD mice in areas of intense inflammation and amyloid deposition; expression was coincident with the appearance of plaques in the cortex, hippocampus, brain stem, and thalamus. The expression of EGFP increased as a function of plaque formation and subsequent microgliosis and was restricted to microglial cells located in close proximity to neuritic plaques. AD mice with CB2R deletion exhibited decreased neuritic plaques with no changes in IL1ß expression. CONCLUSIONS: Using a novel reporter mouse line, we found no evidence for CB2R expression in the healthy CNS but clear up-regulation in the context of amyloid-triggered neuroinflammation. Data from CB2R null mice indicate that they play a complex role in the response to plaque formation.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Regulación de la Expresión Génica/genética , Receptor Cannabinoide CB2/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Análisis de Varianza , Animales , Encéfalo/patología , Antígeno CD11b/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Fragmentos de Péptidos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Receptor Cannabinoide CB2/genética
4.
Biomedicines ; 10(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892676

RESUMEN

In addition to motor dysfunction, patients with Parkinson's disease (PD) are often affected by neuropsychiatric disorders, such as anxiety and depression. In animal models, activation of the endocannabinoid (eCB) system produces anxiolytic and antidepressant-like behavioral effects. CB2 agonists have demonstrated neuroprotective effects against neurotoxin-induced dopamine neuron loss and deficits in motor function. However, it remains unknown whether CB2 agonism ameliorates anxiogenic- and depressive-like behaviors in PD models. Here, we report that the selective CB2 agonist GW842166x exerted neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced loss of dopaminergic terminals and dopamine release in the striatum, which were blocked by the CB2 antagonist AM630. We found that 6-OHDA-treated mice exhibited anxiogenic- and depressive-like behaviors in the open-field, sucrose preference, novelty-suppressed feeding, marble burying, and forced swim tests but did not show significant changes in the elevated plus-maze and light-dark box test. GW842166x treatments ameliorated 6-OHDA-induced anxiogenic- and depressive-like behaviors, but the effects were blocked by CB2 antagonism, suggesting a CB2-dependent mechanism. These results suggest that the CB2 agonist GW842166x not only reduces 6-OHDA-induced motor function deficits but also anxiogenic- and depressive-like behaviors in 6-OHDA mouse models of PD.

5.
Front Pharmacol ; 13: 841766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645832

RESUMEN

The distribution and roles of the cannabinoid CB2 receptor in the CNS are still a matter of debate. Recent data suggest that, in addition to its presence in microglial cells, the CB2 receptor may be also expressed at low levels, yet biologically relevant, in other cell types such as neurons. It is accepted that the expression of CB2 receptors in the CNS is low under physiological conditions and is significantly elevated in chronic neuroinflammatory states associated with neurodegenerative diseases such as Alzheimer's disease. By using a novel mouse model (CB2 EGFP/f/f), we studied the distribution of cannabinoid CB2 receptors in the 5xFAD mouse model of Alzheimer's disease (by generating 5xFAD/CB2 EGFP/f/f mice) and explored the roles of CB2 receptors in microglial function. We used a novel selective and brain penetrant CB2 receptor agonist (RO6866945) as well as mice lacking the CB2 receptor (5xFAD/CB2 -/-) for these studies. We found that CB2 receptors are expressed in dystrophic neurite-associated microglia and that their modulation modifies the number and activity of microglial cells as well as the metabolism of the insoluble form of the amyloid peptide. These results support microglial CB2 receptors as potential targets for the development of amyloid-modulating therapies.

6.
mBio ; 9(2)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615497

RESUMEN

Carbapenem-resistant (CR) sequence type 258 (ST258) Klebsiella pneumoniae has become an urgent health care threat, causing an increasing number of high-mortality infections. Its resistance to numerous antibiotics and threat to immunocompromised patients necessitate finding new therapies to combat these infections. Previous successes in the laboratory, as well as the conservation of capsular polysaccharide (CPS) among the members of the ST258 clone, suggest that monoclonal antibody (MAb) therapy targeting the outer polysaccharide capsule of K. pneumoniae could serve as a valuable treatment alternative for afflicted patients. Here, we isolated several IgG antibodies from mice inoculated with a mixture of CR K. pneumoniae CPS conjugated to anthrax protective antigen. Two of these MAbs, 17H12 and 8F12, bind whole and oligosaccharide epitopes of the CPS of clade 2 ST258 CR K. pneumoniae, which is responsible for the most virulent CR K. pneumoniae infections in the United States. These antibodies were shown to agglutinate all clade 2 strains and were also shown to promote extracellular processes killing these bacteria, including biofilm inhibition, complement deposition, and deployment of neutrophil extracellular traps. Additionally, they promoted opsonophagocytosis and intracellular killing of CR K. pneumoniae by human-derived neutrophils and cultured murine macrophages. Finally, when mice were intratracheally infected with preopsonized clade 2 CR K. pneumoniae, these MAbs reduced bacterial dissemination to organs. Our data suggest that broadly reactive anticapsular antibodies and vaccines against clade 2 ST258 CR K. pneumoniae are possible. Such MAbs and vaccines would benefit those susceptible populations at risk of infection with this group of multidrug-resistant bacteria.IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is an enteric bacterium that has been responsible for an increasing number of deadly outbreaks and hospital-acquired infections. The pathogen's resistance to numerous antibiotics, including new drugs, leaves few therapeutic options available for infected patients, who often are too sick to fight the infection themselves. Immunotherapy utilizing monoclonal antibodies has been successful in other medical fields, and antibodies targeting the outer polysaccharide capsule of these bacteria could be a valuable treatment alternative. This study presents two anticapsular antibodies, 17H12 and 8F12, that were found to be protective against the most virulent carbapenem-resistant K. pneumoniae clinical strains. These antibodies are shown to promote the killing of these strains through several extracellular and intracellular processes and prevent the spread of infection in mice from the lungs to distal organs. Thus, they could ultimately treat or protect patients infected or at risk of infection by this multidrug-resistant bacterium.


Asunto(s)
Anticuerpos Antibacterianos/administración & dosificación , Infecciones por Klebsiella/terapia , Klebsiella pneumoniae/inmunología , Polisacáridos Bacterianos/inmunología , Pruebas de Aglutinación , Estructuras Animales/microbiología , Animales , Anticuerpos Antibacterianos/aislamiento & purificación , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/aislamiento & purificación , Enterobacteriaceae Resistentes a los Carbapenémicos/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/aislamiento & purificación , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Neutrófilos/inmunología , Neutrófilos/microbiología , Fagocitosis , Resultado del Tratamiento
7.
Biochem Pharmacol ; 157: 202-209, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30195729

RESUMEN

The search for novel therapies for the treatment of Alzheimer's disease is an urgent need, due to the current paucity of available pharmacological tools and the recent failures obtained in clinical trials. Among other strategies, the modulation of amyloid-triggered neuroinflammation by the endocannabinoid system seems of relevance. Previous data indicate that the enhancement of the endocannabinoid tone through the inhibition of the enzymes responsible for the degradation of their main endogenous ligands may render beneficial effects. Based on previously reported data, in which we described a paradoxical effect of the genetic deletion of the fatty acid amide hydrolase, we here aimed to expand our knowledge on the role of the endocannabinoid system in the context of Alzheimer's disease. To that end, we inhibited the production of interleukin-1ß, one of the main inflammatory cytokines involved in the neuroinflammation triggered by amyloid peptides, in a transgenic mouse model of this disease by using minocycline, a drug known to impair the synthesis of this cytokine. Our data suggest that interleukin-1ß may be instrumental in order to achieve the beneficial effects derived of fatty acid amide hydrolase genetic inactivation. This could be appreciated at the molecular (cytokine expression, amyloid production, plaque deposition) as well as behavioral levels (memory impairment). We here describe a previously unknown link between the endocannabinoid system and interleukin-1ß in the context of Alzheimer's disease that open new possibilities for the development of novel therapeutics.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Amidohidrolasas/genética , Interleucina-1beta/fisiología , Enfermedad de Alzheimer/genética , Animales , Citocinas/biosíntesis , Citocinas/genética , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microglía/citología , Minociclina/farmacología , Fenotipo
8.
Artículo en Español | LILACS, BINACIS | ID: biblio-1048311

RESUMEN

El fútbol es uno de los deportes más populares del mundo, cuenta con una gran cantidad de participantes tanto a nivel profesional como recreacional. Conocer la cantidad y tipos de lesiones es vital para el desarrollo de estrategias preventivas. Los datos fueron recabados durante la temporada 2018 de entrenamientos y partidos, jugadores entre 7 y 13 años de edad, del Futbol Infantil del Racing Club de Avellaneda. El registro de los datos se realizó mediante el uso de una planilla, acorde a un nomenclador. Se recibieron un total de 314 consultas en un total de 446 hs de trabajo, siendo la incidencia de lesiones de 0,70 por hora de entrenamiento. El 85 % del total de las consultas fueron lesiones registradas durante entrenamientos y partidos y el restante 15% lesiones producidas fuera del club. El 86% de las consultas fueron hechas por las categorías mayores. La mayor incidencia de lesiones se presenta en el miembro inferior (72%), seguido por zona media (18%) y el miembro superior (10%). El mayor número de consultas se debieron a traumatismos (24%), lesiones musculares (20%), torsiones (14%), lesiones del cartílago de crecimiento (10%), tendinopatias (6%), talalgias (4%) y fracturas traumáticas (3%). Las lesiones más comunes fueron los traumatismos, las afecciones musculares y las torsiones. Asimismo el sitio anatómico más afectado fue la rodilla, el muslo y el tobillo. Los trabajos de prevención no deben verse como una pérdida de tiempo, sino como una forma de optimizar los entrenamientos


Football is one of the most popular sports in the world, with a large number of participants both professionally and recreationally. Knowing the number and types of injuries is vital for the development of preventive strategies. The data were collected during the 2018 season of training sessions and matches, players between 7 and 13 years of age, of the Children's Football of the Racing Club de Avellaneda. The data was recorded using a spreadsheet, according to a register. A total of 314 consultations were received in a total of 446 working hours, with injuries occurring 0.70 per hour of training. 85% of all consultations were injuries recorded during training and matches and the remaining 15% injuries produced outside the club. 86% of consultations were made by the major categories. The highest incidence of lesions occurred in the lower limb (72%), followed by the middle zone (18%) and the upper limb (10%). The highest number of visits were due to injuries (24%), muscle injuries (20%), sprains (14%), growth cartilage lesions (10%), tendinopathies (6%), talalgia (4%) traumatic fractures (3%). The most common injuries were direct trauma, muscle conditions and sprains. Also the most affected anatomical site was the knee, thigh and ankle. Prevention work should not be seen as a waste of time, but as a way to optimize training


Asunto(s)
Niño , Traumatismos en Atletas , Fútbol/lesiones , Traumatismos del Tobillo , Traumatismos de la Rodilla
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA