Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Yale J Biol Med ; 94(2): 311-329, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34211351

RESUMEN

Rabies is an acute, progressive encephalitis caused by a lyssavirus, with the highest case fatality of any conventional infectious disease. More than 17 different lyssaviruses have been described, but rabies virus is the most widely distributed and important member of the genus. Globally, tens of thousands of human fatalities still occur each year. Although all mammals are susceptible, most human fatalities are caused by the bites of rabid dogs, within lesser developed countries. A global plan envisions the elimination of human rabies cases caused via dogs by the year 2030. The combination of prophylaxis of exposed humans and mass vaccination of dogs is an essential strategy for such success. Regionally, the Americas are well on the way to meet this goal. As one example of achievement, Costa Rica, a small country within Central America, reported the last autochthonous case of human rabies transmitted by a dog at the end of the 1970s. Today, rabies virus transmitted by the common vampire bat, Desmodus rotundus, as well as other wildlife, remains a major concern for humans, livestock, and other animals throughout the region. This review summarizes the historical occurrence of dog rabies and its elimination in Costa Rica, describes the current occurrence of the disease with a particular focus upon affected livestock, discusses the ecology of the vampire bat as the primary reservoir relevant to management, details the clinical characteristics of recent human rabies cases, and provides suggestions for resolution of global challenges posed by this zoonosis within a One Health context.


Asunto(s)
Quirópteros , Virus de la Rabia , Rabia , Animales , Costa Rica , Perros , Rabia/prevención & control , Rabia/veterinaria , Estados Unidos , Zoonosis
2.
Emerg Infect Dis ; 26(7): 1399-1408, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32568051

RESUMEN

Using questionnaires and serologic testing, we evaluated bat and lyssavirus exposure among persons in an area of Nigeria that celebrates a bat festival. Bats from festival caves underwent serologic testing for phylogroup II lyssaviruses (Lagos bat virus, Shimoni bat virus, Mokola virus). The enrolled households consisted of 2,112 persons, among whom 213 (10%) were reported to have ever had bat contact (having touched a bat, having been bitten by a bat, or having been scratched by a bat) and 52 (2%) to have ever been bitten by a bat. Of 203 participants with bat contact, 3 (1%) had received rabies vaccination. No participant had neutralizing antibodies to phylogroup II lyssaviruses, but >50% of bats had neutralizing antibodies to these lyssaviruses. Even though we found no evidence of phylogroup II lyssavirus exposure among humans, persons interacting with bats in the area could benefit from practicing bat-related health precautions.


Asunto(s)
Mordeduras y Picaduras , Quirópteros , Lyssavirus , Infecciones por Rhabdoviridae , Animales , Anticuerpos Neutralizantes , Vacaciones y Feriados , Humanos , Lyssavirus/genética , Nigeria , Infecciones por Rhabdoviridae/epidemiología , Infecciones por Rhabdoviridae/veterinaria
3.
Biologicals ; 64: 83-95, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32089431

RESUMEN

Rabies is a major neglected zoonotic disease and causes a substantial burden in the Asian region. Currently, Pacific Oceania is free of rabies but enzootic areas throughout southeast Asia represent a major risk of disease introduction to this region. On September 25-26, 2019, researchers, government officials and related stakeholders met at an IABS conference in Bangkok, Thailand to engage on the topic of human rabies mediated by dogs. The objective of the meeting was focused upon snowballing efforts towards achieving substantial progress in rabies prevention, control and elimination within Asia by 2030, and thereby to safeguard the Pacific region. Individual sessions focused upon domestic animal, wildlife and human vaccination; the production and evaluation of quality, safety and efficacy of existing rabies biologics; and the future development of new products. Participants reviewed the progress to date in eliminating canine rabies by mass vaccination, described supportive methods to parenteral administration by oral vaccine application, considered updated global and local approaches at human prophylaxis and discussed the considerable challenges ahead. Such opportunities provide continuous engagement on disease management among professionals at a trans-disciplinary level and promote new applied research collaborations in a modern One Health context.


Asunto(s)
Enfermedades de los Perros , Vacunas Antirrábicas/uso terapéutico , Rabia , Zoonosis , Animales , Congresos como Asunto , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/prevención & control , Perros , Humanos , Rabia/epidemiología , Rabia/prevención & control , Tailandia , Zoonosis/epidemiología , Zoonosis/prevención & control
5.
Vet Res ; 49(1): 84, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30165897

RESUMEN

The original article [1] contained an error in the Author details paragraph. "5Neglected Zoonotic Diseases, World Health Organization, Geneva, Switzerland" should be replaced by "5Le Grand-Saconnex, Switzerland".

6.
Vet Res ; 49(1): 61, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-30005701

RESUMEN

The mass vaccination of dogs is a proven tool for rabies prevention. Besides parenteral delivery of inactivated vaccines, over the past several decades, several self-replicating biologics, including modified-live, attenuated and recombinant viruses, have been evaluated for the oral vaccination of dogs against rabies. Vaccines are included within an attractive bait for oral consumption by free-ranging dogs. Due to the high affinity between dogs and humans, such biologics intended for oral vaccination of dogs (OVD) need to be efficacious as well as safe. Baits should be preferentially attractive to dogs and not to non-target species. Although many different types have been evaluated successfully, no universal bait has been identified to date. Moreover, high bait acceptance does not necessarily mean that vaccine efficacy and programmatic success is predictable. The use of OVD in the laboratory and field has demonstrated the safety and utility of this technology. Within a One Health context, OVD should be considered as part of a holistic plan for the global elimination of canine rabies.


Asunto(s)
Enfermedades de los Perros/prevención & control , Vacunas Antirrábicas/administración & dosificación , Rabia/veterinaria , Vacunación/veterinaria , Administración Oral , Animales , Perros , Humanos , Rabia/prevención & control
8.
Vet Res ; 48(1): 57, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28938920

RESUMEN

RABORAL V-RG® is an oral rabies vaccine bait that contains an attenuated ("modified-live") recombinant vaccinia virus vector vaccine expressing the rabies virus glycoprotein gene (V-RG). Approximately 250 million doses have been distributed globally since 1987 without any reports of adverse reactions in wildlife or domestic animals since the first licensed recombinant oral rabies vaccine (ORV) was released into the environment to immunize wildlife populations against rabies. V-RG is genetically stable, is not detected in the oral cavity beyond 48 h after ingestion, is not shed by vaccinates into the environment, and has been tested for thermostability under a range of laboratory and field conditions. Safety of V-RG has been evaluated in over 50 vertebrate species, including non-human primates, with no adverse effects observed regardless of route or dose. Immunogenicity and efficacy have been demonstrated under laboratory and field conditions in multiple target species (including fox, raccoon, coyote, skunk, raccoon dog, and jackal). The liquid vaccine is packaged inside edible baits (i.e., RABORAL V-RG, the vaccine-bait product) which are distributed into wildlife habitats for consumption by target species. Field application of RABORAL V-RG has contributed to the elimination of wildlife rabies from three European countries (Belgium, France and Luxembourg) and of the dog/coyote rabies virus variant from the United States of America (USA). An oral rabies vaccination program in west-central Texas has essentially eliminated the gray fox rabies virus variant from Texas with the last case reported in a cow during 2009. A long-term ORV barrier program in the USA using RABORAL V-RG is preventing substantial geographic expansion of the raccoon rabies virus variant. RABORAL V-RG has also been used to control wildlife rabies in Israel for more than a decade. This paper: (1) reviews the development and historical use of RABORAL V-RG; (2) highlights wildlife rabies control programs using the vaccine in multiple species and countries; and (3) discusses current and future challenges faced by programs seeking to control or eliminate wildlife rabies.


Asunto(s)
Animales Salvajes/virología , Vacunas Antirrábicas/uso terapéutico , Rabia/veterinaria , Administración Oral , Animales , Rabia/prevención & control , Vacunas Antirrábicas/administración & dosificación , Virus de la Rabia/genética , Vacunas Sintéticas/uso terapéutico , Virus Vaccinia/genética
9.
Proc Biol Sci ; 283(1842)2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852799

RESUMEN

Rabies causes more than 24 000 human deaths annually in Sub-Saharan Africa. The World Health Organization recommends annual canine vaccination campaigns with at least 70% coverage to control the disease. While previous studies have considered optimal coverage of animal rabies vaccination, variation in the frequency of vaccination campaigns has not been explored. To evaluate the cost-effectiveness of rabies canine vaccination campaigns at varying coverage and frequency, we parametrized a rabies virus transmission model to two districts of northwest Tanzania, Ngorongoro (pastoral) and Serengeti (agro-pastoral). We found that optimal vaccination strategies were every 2 years, at 80% coverage in Ngorongoro and annually at 70% coverage in Serengeti. We further found that the optimality of these strategies was sensitive to the rate of rabies reintroduction from outside the district. Specifically, if a geographically coordinated campaign could reduce reintroduction, vaccination campaigns every 2 years could effectively manage rabies in both districts. Thus, coordinated campaigns may provide monetary savings in addition to public health benefits. Our results indicate that frequency and coverage of canine vaccination campaigns should be evaluated simultaneously and tailored to local canine ecology as well as to the risk of disease reintroduction from surrounding regions.


Asunto(s)
Enfermedades de los Perros/prevención & control , Programas de Inmunización , Vacunas Antirrábicas/uso terapéutico , Rabia/prevención & control , Vacunación/veterinaria , Animales , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/virología , Perros , Humanos , Rabia/epidemiología , Virus de la Rabia , Tanzanía/epidemiología
10.
Proc Natl Acad Sci U S A ; 110(10): E861-8, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23404707

RESUMEN

We present an unconventional approach to antiviral drug discovery, which is used to identify potent small molecules against rabies virus. First, we conceptualized viral capsid assembly as occurring via a host-catalyzed biochemical pathway, in contrast to the classical view of capsid formation by self-assembly. This suggested opportunities for antiviral intervention by targeting previously unappreciated catalytic host proteins, which were pursued. Second, we hypothesized these host proteins to be components of heterogeneous, labile, and dynamic multi-subunit assembly machines, not easily isolated by specific target protein-focused methods. This suggested the need to identify active compounds before knowing the precise protein target. A cell-free translation-based small molecule screen was established to recreate the hypothesized interactions involving newly synthesized capsid proteins as host assembly machine substrates. Hits from the screen were validated by efficacy against infectious rabies virus in mammalian cell culture. Used as affinity ligands, advanced analogs were shown to bind a set of proteins that effectively reconstituted drug sensitivity in the cell-free screen and included a small but discrete subfraction of cellular ATP-binding cassette family E1 (ABCE1), a host protein previously found essential for HIV capsid formation. Taken together, these studies advance an alternate view of capsid formation (as a host-catalyzed biochemical pathway), a different paradigm for drug discovery (whole pathway screening without knowledge of the target), and suggest the existence of labile assembly machines that can be rendered accessible as next-generation drug targets by the means described.


Asunto(s)
Antivirales/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Virus de la Rabia/efectos de los fármacos , Virus de la Rabia/fisiología , Proteínas Virales/fisiología , Secuencia de Aminoácidos , Animales , Sistema Libre de Células , Chlorocebus aethiops , Descubrimiento de Drogas , Interacciones Huésped-Patógeno/fisiología , Humanos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/fisiología , Dominios y Motivos de Interacción de Proteínas , Virus de la Rabia/genética , Células Vero , Proteínas Virales/química , Proteínas Virales/genética , Ensamble de Virus/efectos de los fármacos
11.
Proc Natl Acad Sci U S A ; 110(20): 8194-9, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23610427

RESUMEN

Although there are over 1,150 bat species worldwide, the diversity of viruses harbored by bats has only recently come into focus as a result of expanded wildlife surveillance. Such surveys are of importance in determining the potential for novel viruses to emerge in humans, and for optimal management of bats and their habitats. To enhance our knowledge of the viral diversity present in bats, we initially surveyed 415 sera from African and Central American bats. Unbiased high-throughput sequencing revealed the presence of a highly diverse group of bat-derived viruses related to hepaciviruses and pegiviruses within the family Flaviridae. Subsequent PCR screening of 1,258 bat specimens collected worldwide indicated the presence of these viruses also in North America and Asia. A total of 83 bat-derived viruses were identified, representing an infection rate of nearly 5%. Evolutionary analyses revealed that all known hepaciviruses and pegiviruses, including those previously documented in humans and other primates, fall within the phylogenetic diversity of the bat-derived viruses described here. The prevalence, unprecedented viral biodiversity, phylogenetic divergence, and worldwide distribution of the bat-derived viruses suggest that bats are a major and ancient natural reservoir for both hepaciviruses and pegiviruses and provide insights into the evolutionary history of hepatitis C virus and the human GB viruses.


Asunto(s)
Quirópteros/virología , Reservorios de Enfermedades/veterinaria , Flaviviridae/genética , Hepacivirus/genética , Virosis/virología , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Codón , Reservorios de Enfermedades/virología , Variación Genética , Genoma Viral , Geografía , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Virosis/veterinaria
12.
Emerg Infect Dis ; 21(10): 1840-3, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26402433

RESUMEN

As part of a larger survey for detection of pathogens among wildlife in sub-Saharan Africa conducted during 2007-2012, multiple diverse paramyxovirus sequences were detected in renal tissues of bats. Phylogenetic analysis supports the presence of at least 2 major viral lineages and suggests that paramyxoviruses are strongly associated with several bat genera.


Asunto(s)
Quirópteros/virología , Henipavirus/patogenicidad , Infecciones por Paramyxoviridae/epidemiología , Paramyxovirinae/clasificación , Prevalencia , África del Sur del Sahara/epidemiología , Animales , Infecciones por Paramyxoviridae/virología , Filogenia , Vigilancia de la Población/métodos , ARN Viral/clasificación , ARN Viral/genética
13.
PLoS Pathog ; 9(10): e1003657, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130481

RESUMEN

Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris) from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.


Asunto(s)
Quirópteros/virología , Reservorios de Enfermedades/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/genética , Filogenia , Animales , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Perú/epidemiología
14.
Ann Neurol ; 75(1): 155-60, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24038455

RESUMEN

Eight years after emigrating from Brazil, an otherwise healthy man developed rabies. An exposure prior to immigration was reported. Genetic analysis revealed a canine rabies virus variant found only in the patient's home country, and the patient had not traveled internationally since immigrating to the United States. We describe how epidemiological, phylogenetic, and viral sequencing data provided confirmation that rabies encephalomyelitis may present after a long, multiyear incubation period, a consideration that previously has been hypothesized without the ability to exclude a more recent exposure. Accordingly, rabies should be considered in the diagnosis of any acute encephalitis, myelitis, or encephalomyelitis.


Asunto(s)
Emigrantes e Inmigrantes , Periodo de Incubación de Enfermedades Infecciosas , Filogenia , Rabia/líquido cefalorraquídeo , Rabia/diagnóstico , Adulto , Animales , Brasil , Perros , Humanos , Masculino , Factores de Tiempo , Estados Unidos
15.
Proc Natl Acad Sci U S A ; 109(48): 19715-20, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23150575

RESUMEN

Determining the genetic pathways that viruses traverse to establish in new host species is crucial to predict the outcome of cross-species transmission but poorly understood for most host-virus systems. Using sequences encoding 78% of the rabies virus genome, we explored the extent, repeatability and dynamic outcome of evolution associated with multiple host shifts among New World bats. Episodic bursts of positive selection were detected in several viral proteins, including regions associated with host cell interaction and viral replication. Host shifts involved unique sets of substitutions, and few sites exhibited repeated evolution across adaptation to many bat species, suggesting diverse genetic determinants over host range. Combining these results with genetic reconstructions of the demographic histories of individual viral lineages revealed that although rabies viruses shared consistent three-stage processes of emergence in each new bat species, host shifts involving greater numbers of positively selected substitutions had longer delays between cross-species transmission and enzootic viral establishment. Our results point to multiple evolutionary routes to host establishment in a zoonotic RNA virus that may influence the speed of viral emergence.


Asunto(s)
Evolución Biológica , Quirópteros/virología , Virus de la Rabia/fisiología , Animales , Teorema de Bayes , Genoma Viral , Datos de Secuencia Molecular , Virus de la Rabia/genética
16.
Proc Natl Acad Sci U S A ; 109(11): 4269-74, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371588

RESUMEN

Influenza A virus reservoirs in animals have provided novel genetic elements leading to the emergence of global pandemics in humans. Most influenza A viruses circulate in waterfowl, but those that infect mammalian hosts are thought to pose the greatest risk for zoonotic spread to humans and the generation of pandemic or panzootic viruses. We have identified an influenza A virus from little yellow-shouldered bats captured at two locations in Guatemala. It is significantly divergent from known influenza A viruses. The HA of the bat virus was estimated to have diverged at roughly the same time as the known subtypes of HA and was designated as H17. The neuraminidase (NA) gene is highly divergent from all known influenza NAs, and the internal genes from the bat virus diverged from those of known influenza A viruses before the estimated divergence of the known influenza A internal gene lineages. Attempts to propagate this virus in cell cultures and chicken embryos were unsuccessful, suggesting distinct requirements compared with known influenza viruses. Despite its divergence from known influenza A viruses, the bat virus is compatible for genetic exchange with human influenza viruses in human cells, suggesting the potential capability for reassortment and contributions to new pandemic or panzootic influenza A viruses.


Asunto(s)
Quirópteros/virología , Virus de la Influenza A/genética , Filogenia , Animales , ARN Polimerasas Dirigidas por ADN/metabolismo , Genes Reporteros/genética , Genoma Viral/genética , Geografía , Guatemala , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Datos de Secuencia Molecular , Neuraminidasa/química , Neuraminidasa/genética , Análisis de Secuencia de ADN
17.
J Gen Virol ; 95(Pt 5): 1025-1032, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24496827

RESUMEN

In 2009, a novel lyssavirus (subsequently named Ikoma lyssavirus, IKOV) was detected in the brain of an African civet (Civettictis civetta) with clinical rabies in the Serengeti National Park of Tanzania. The degree of nucleotide divergence between the genome of IKOV and those of other lyssaviruses predicted antigenic distinction from, and lack of protection provided by, available rabies vaccines. In addition, the index case was considered likely to be an incidental spillover event, and therefore the true reservoir of IKOV remained to be identified. The advent of sensitive molecular techniques has led to a rapid increase in the discovery of novel viruses. Detecting viral sequence alone, however, only allows for prediction of phenotypic characteristics and not their measurement. In the present study we describe the in vitro and in vivo characterization of IKOV, demonstrating that it is (1) pathogenic by peripheral inoculation in an animal model, (2) antigenically distinct from current rabies vaccine strains and (3) poorly neutralized by sera from humans and animals immunized against rabies. In a laboratory mouse model, no protection was elicited by a licensed rabies vaccine. We also investigated the role of bats as reservoirs of IKOV. We found no evidence for infection among 483 individuals of at least 13 bat species sampled across sites in the Serengeti and Southern Kenya.


Asunto(s)
Antígenos Virales/genética , Antígenos Virales/inmunología , Lyssavirus/genética , Lyssavirus/inmunología , Infecciones por Rhabdoviridae/veterinaria , Animales , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Kenia , Lyssavirus/clasificación , Lyssavirus/aislamiento & purificación , Ratones , Vacunas Antirrábicas/inmunología , Infecciones por Rhabdoviridae/virología , Tanzanía , Viverridae
18.
PLoS Pathog ; 8(5): e1002720, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615575

RESUMEN

Rates of evolution span orders of magnitude among RNA viruses with important implications for viral transmission and emergence. Although the tempo of viral evolution is often ascribed to viral features such as mutation rates and transmission mode, these factors alone cannot explain variation among closely related viruses, where host biology might operate more strongly on viral evolution. Here, we analyzed sequence data from hundreds of rabies viruses collected from bats throughout the Americas to describe dramatic variation in the speed of rabies virus evolution when circulating in ecologically distinct reservoir species. Integration of ecological and genetic data through a comparative bayesian analysis revealed that viral evolutionary rates were labile following historical jumps between bat species and nearly four times faster in tropical and subtropical bats compared to temperate species. The association between geography and viral evolution could not be explained by host metabolism, phylogeny or variable selection pressures, and instead appeared to be a consequence of reduced seasonality in bat activity and virus transmission associated with climate. Our results demonstrate a key role for host ecology in shaping the tempo of evolution in multi-host viruses and highlight the power of comparative phylogenetic methods to identify the host and environmental features that influence transmission dynamics.


Asunto(s)
Quirópteros/virología , Reservorios de Enfermedades/virología , Evolución Molecular , Virus de la Rabia/genética , Rabia/veterinaria , Animales , Secuencia de Bases , Teorema de Bayes , Clima , Variación Genética , Geografía , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Tasa de Mutación , Filogenia , Rabia/transmisión , Rabia/virología , Virus de la Rabia/clasificación , Virus de la Rabia/patogenicidad , Análisis de Secuencia de ARN
19.
PLoS Pathog ; 8(6): e1002786, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737076

RESUMEN

In nature, rabies virus (RABV; genus Lyssavirus, family Rhabdoviridae) represents an assemblage of phylogenetic lineages, associated with specific mammalian host species. Although it is generally accepted that RABV evolved originally in bats and further shifted to carnivores, mechanisms of such host shifts are poorly understood, and examples are rarely present in surveillance data. Outbreaks in carnivores caused by a RABV variant, associated with big brown bats, occurred repeatedly during 2001-2009 in the Flagstaff area of Arizona. After each outbreak, extensive control campaigns were undertaken, with no reports of further rabies cases in carnivores for the next several years. However, questions remained whether all outbreaks were caused by a single introduction and further perpetuation of bat RABV in carnivore populations, or each outbreak was caused by an independent introduction of a bat virus. Another question of concern was related to adaptive changes in the RABV genome associated with host shifts. To address these questions, we sequenced and analyzed 66 complete and 20 nearly complete RABV genomes, including those from the Flagstaff area and other similar outbreaks in carnivores, caused by bat RABVs, and representatives of the major RABV lineages circulating in North America and worldwide. Phylogenetic analysis demonstrated that each Flagstaff outbreak was caused by an independent introduction of bat RABV into populations of carnivores. Positive selection analysis confirmed the absence of post-shift changes in RABV genes. In contrast, convergent evolution analysis demonstrated several amino acids in the N, P, G and L proteins, which might be significant for pre-adaptation of bat viruses to cause effective infection in carnivores. The substitution S/T242 in the viral glycoprotein is of particular merit, as a similar substitution was suggested for pathogenicity of Nishigahara RABV strain. Roles of the amino acid changes, detected in our study, require additional investigations, using reverse genetics and other approaches.


Asunto(s)
Adaptación Fisiológica/genética , Carnívoros/virología , Vectores de Enfermedades , Virus de la Rabia/genética , Rabia/epidemiología , Rabia/veterinaria , Animales , Arizona/epidemiología , Gatos , Quirópteros/virología , Zorros/virología , Genes Virales/genética , Mephitidae/virología , Filogenia , Virus de la Rabia/patogenicidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Virales/química , Proteínas Virales/genética
20.
Vet Res ; 45: 77, 2014 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-25106552

RESUMEN

The SAG2 vaccine (RABIGEN® SAG2) is a modified live attenuated rabies virus vaccine, selected from the SAD Bern strain in a two-step process of amino acid mutation using neutralizing monoclonal antibodies. The strain is genetically stable and does not spread in vivo or induce a persistent infection. Its absence of residual pathogenicity was extensively demonstrated in multiple target and non target species (such as wild carnivores and rodent species), including non-human primates. The efficacy of SAG2 baits was demonstrated according to the EU requirements for the red fox and raccoon dog. The use of safe and potent rabies vaccines such as SAG2 largely contributed to the elimination of rabies in Estonia, France, Italy and Switzerland. Importantly, these countries were declared free of rabies after few years of oral vaccination campaigns with SAG2 baits distributed with an appropriate strategy. The excellent tolerance of the SAG2 vaccine has been confirmed in the field since its first use in 1993. No safety issues have been reported, and in particular no vaccine-induced rabies cases were diagnosed, after the distribution of more than 20 million SAG2 baits in Europe.


Asunto(s)
Zorros , Vacunas Antirrábicas/administración & dosificación , Virus de la Rabia/fisiología , Rabia/veterinaria , Perros Mapache , Administración Oral , Animales , Erradicación de la Enfermedad , Europa (Continente) , Rabia/prevención & control , Vacunas Antirrábicas/genética , Vacunas Antirrábicas/normas , Vacunación/veterinaria , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA