RESUMEN
Over the last decade, evidence has mounted for a prominent etiologic role of femoroacetabular impingement (FAI) in the development of early hip osteoarthritis (OA). The aim of this study was to compare the ultrastructure and tissue composition of the hip labrum in healthy and pathological conditions, as FAI and OA, to provide understanding of structural changes which might be helpful in the future to design targeted therapies and improve treatment indications. We analyzed labral tissue samples from five healthy multi-organ donors (MCDs) (median age, 38 years), five FAI patients (median age, 37 years) and five late-stage OA patients undergoing total hip replacement (median age, 56 years). We evaluated morpho-functional by histology and transmission electron microscopy. Extracellular matrix (ECM) structure changes were similar in specimens from FAI compared to those from patients with OA (more severe in the latter) showing disorganization of collagen fibers and increased proteoglycan content. In FAI and in OA nuclei the chromatin was condensed, organelle degenerated and cytoplasm vacuolized. Areas of calcification were mainly observed in FAI and OA labrum, as well as apoptotic-like features. We showed that labral tissue of patients with FAI had similar pathological alterations of tissue obtained from OA patients, suggesting that FAI patients might have high susceptibility to develop OA.
Asunto(s)
Artroplastia de Reemplazo de Cadera , Calcinosis , Pinzamiento Femoroacetabular , Osteoartritis de la Cadera , Humanos , Adulto , Persona de Mediana Edad , Pinzamiento Femoroacetabular/patología , Pinzamiento Femoroacetabular/cirugía , Osteoartritis de la Cadera/patología , Artroplastia de Reemplazo de Cadera/efectos adversos , Calcinosis/complicaciones , Matriz Extracelular/patología , Articulación de la Cadera/patología , Articulación de la Cadera/cirugíaRESUMEN
Infection and resulting bone defects caused by Staphylococcus aureus is one of the major issues in orthopaedic surgeries. Vancomycin hydrochloride (VaH) is largely used to manage these events. Here, a human derived bone paste supplemented with biopolymer microcarriers for VaH sustained delivery to merge osteoinductive and antimicrobial actions is described. In detail, different emulsion formulations were tested to fabricate micro-carriers of poly-lactic-co-glycolic acid (PLGA) and hydroxyapatite (HA) by a proprietary technology (named Supercritical Emulsion Extraction). These carriers (mean size 827 ± 68 µm; loading 47 mgVaH/gPLGA) were assembled with human demineralized bone matrix (DBM) to obtain an antimicrobial bone paste system (250 mg/0.5 cm3 w/v, carrier/DBM). Release profiles in PBS indicated a daily drug average release of about 4 µg/mL over two weeks. This concentration was close to the minimum inhibitory concentration and able to effectively inhibit the S. aureus growth in our experimental sets. Carriers cytotoxicity tests showed absence of adverse effects on cell viability at the concentrations used for paste assembly. This approach points toward the potential of the DBM-carrier-antibiotic system in hampering the bacterial growth with accurately controlled antibiotic release and opens perspectives on functional bone paste with PLGA carriers for the controlled release of bioactive molecules.