Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Biol Chem ; 299(7): 104836, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37209827

RESUMEN

Insulin is made from proinsulin, but the extent to which fasting/feeding controls the homeostatically regulated proinsulin pool in pancreatic ß-cells remains largely unknown. Here, we first examined ß-cell lines (INS1E and Min6, which proliferate slowly and are routinely fed fresh medium every 2-3 days) and found that the proinsulin pool size responds to each feeding within 1 to 2 h, affected both by the quantity of fresh nutrients and the frequency with which they are provided. We observed no effect of nutrient feeding on the overall rate of proinsulin turnover as quantified from cycloheximide-chase experiments. We show that nutrient feeding is primarily linked to rapid dephosphorylation of translation initiation factor eIF2α, presaging increased proinsulin levels (and thereafter, insulin levels), followed by its rephosphorylation during the ensuing hours that correspond to a fall in proinsulin levels. The decline of proinsulin levels is blunted by the integrated stress response inhibitor, ISRIB, or by inhibition of eIF2α rephosphorylation with a general control nonderepressible 2 (not PERK) kinase inhibitor. In addition, we demonstrate that amino acids contribute importantly to the proinsulin pool; mass spectrometry shows that ß-cells avidly consume extracellular glutamine, serine, and cysteine. Finally, we show that in both rodent and human pancreatic islets, fresh nutrient availability dynamically increases preproinsulin, which can be quantified without pulse-labeling. Thus, the proinsulin available for insulin biosynthesis is rhythmically controlled by fasting/feeding cycles.


Asunto(s)
Células Secretoras de Insulina , Nutrientes , Proinsulina , Humanos , Insulina/biosíntesis , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Nutrientes/farmacología , Proinsulina/biosíntesis , Proinsulina/metabolismo , Estrés Fisiológico , Transducción de Señal , Línea Celular , Regulación hacia Arriba
2.
Nucleic Acids Res ; 50(18): 10626-10642, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36107770

RESUMEN

Hundreds of RNAs are enriched in the projections of neuronal cells. For the vast majority of them, though, the sequence elements that regulate their localization are unknown. To identify RNA elements capable of directing transcripts to neurites, we deployed a massively parallel reporter assay that tested the localization regulatory ability of thousands of sequence fragments drawn from endogenous mouse 3' UTRs. We identified peaks of regulatory activity within several 3' UTRs and found that sequences derived from these peaks were both necessary and sufficient for RNA localization to neurites in mouse and human neuronal cells. The localization elements were enriched in adenosine and guanosine residues. They were at least tens to hundreds of nucleotides long as shortening of two identified elements led to significantly reduced activity. Using RNA affinity purification and mass spectrometry, we found that the RNA-binding protein Unk was associated with the localization elements. Depletion of Unk in cells reduced the ability of the elements to drive RNAs to neurites, indicating a functional requirement for Unk in their trafficking. These results provide a framework for the unbiased, high-throughput identification of RNA elements and mechanisms that govern transcript localization in neurons.


Asunto(s)
Neuronas , Secuencias Reguladoras de Ácido Ribonucleico , Regiones no Traducidas 3'/genética , Animales , Humanos , Ratones , Neuronas/metabolismo , Nucleótidos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN
3.
J Allergy Clin Immunol ; 149(2): 767-781.e6, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34331993

RESUMEN

BACKGROUND: The thymus is a glandular organ that is essential for the formation of the adaptive immune system by educating developing T cells. The thymus is most active during childhood and involutes around the time of adolescence, resulting in a severe reduction or absence of naive T-cell output. The ability to generate a patient-derived human thymus would provide an attractive research platform and enable the development of novel cell therapies. OBJECTIVES: This study sought to systematically evaluate signaling pathways to develop a refined direct differentiation protocol that generates patient-derived thymic epithelial progenitor cells from multiple induced pluripotent stem cells (iPSCs) that can further differentiate into functional patient-derived thymic epithelial cells on transplantation into athymic nude mice. METHODS: Directed differentiation of iPSC generated TEPs that were transplanted into nude mice. Between 14 and 19 weeks posttransplantation, grafts were removed and analyzed by flow cytometry, quantitative PCR, bulk RNA sequencing, and single-cell RNA sequencing for markers of thymic-cell and T-cell development. RESULTS: A direct differentiation protocol that allows the generation of patient-derived thymic epithelial progenitor cells from multiple iPSC lines is described. On transplantation into athymic nude mice, patient-derived thymic epithelial progenitor cells further differentiate into functional patient-derived thymic epithelial cells that can facilitate the development of T cells. Single-cell RNA sequencing analysis of iPSC-derived grafts shows characteristic thymic subpopulations and patient-derived thymic epithelial cell populations that are indistinguishable from TECs present in primary neonatal thymus tissue. CONCLUSIONS: These findings provide important insights and resources for researchers focusing on human thymus biology.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Linfocitos T/fisiología , Timo/citología , Animales , Diferenciación Celular , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/fisiología , Humanos , Ratones , Análisis de Secuencia de ARN , Timo/fisiología
4.
J Infect Dis ; 223(7): 1284-1294, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32809013

RESUMEN

BACKGROUND: Varicella zoster virus (VZV) vasculopathy is characterized by persistent arterial inflammation leading to stroke. Studies show that VZV induces amyloid formation that may aggravate vasculitis. Thus, we determined if VZV central nervous system infection produces amyloid. METHODS: Aß peptides, amylin, and amyloid were measured in cerebrospinal fluid (CSF) from 16 VZV vasculopathy subjects and 36 stroke controls. To determine if infection induced amyloid deposition, mock- and VZV-infected quiescent primary human perineurial cells (qHPNCs), present in vasculature, were analyzed for intracellular amyloidogenic transcripts/proteins and amyloid. Supernatants were assayed for amyloidogenic peptides and ability to induce amyloid formation. To determine amylin's function during infection, amylin was knocked down with small interfering RNA and viral complementary DNA (cDNA) was quantitated. RESULTS: Compared to controls, VZV vasculopathy CSF had increased amyloid that positively correlated with amylin and anti-VZV antibody levels; Aß40 was reduced and Aß42 unchanged. Intracellular amylin, Aß42, and amyloid were seen only in VZV-infected qHPNCs. VZV-infected supernatant formed amyloid fibrils following addition of amyloidogenic peptides. Amylin knockdown decreased viral cDNA. CONCLUSIONS: VZV infection increased levels of amyloidogenic peptides and amyloid in CSF and qHPNCs, indicating that VZV-induced amyloid deposition may contribute to persistent arterial inflammation in VZV vasculopathy. In addition, we identified a novel proviral function of amylin.


Asunto(s)
Péptidos beta-Amiloides , Amiloide , Arteritis , Herpes Zóster , Polipéptido Amiloide de los Islotes Pancreáticos , Fragmentos de Péptidos , Amiloide/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Arteritis/líquido cefalorraquídeo , Arteritis/diagnóstico , Arteritis/virología , ADN Complementario , ADN Viral , Herpes Zóster/líquido cefalorraquídeo , Herpes Zóster/diagnóstico , Herpesvirus Humano 3 , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Accidente Cerebrovascular
5.
J Infect Dis ; 221(7): 1088-1097, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31665341

RESUMEN

BACKGROUND: Herpes zoster is linked to amyloid-associated diseases, including dementia, macular degeneration, and diabetes mellitus, in epidemiological studies. Thus, we examined whether varicella-zoster virus (VZV)-infected cells produce amyloid. METHODS: Production of intracellular amyloidogenic proteins (amylin, amyloid precursor protein [APP], and amyloid-ß [Aß]) and amyloid, as well as extracellular amylin, Aß, and amyloid, was compared between mock- and VZV-infected quiescent primary human spinal astrocytes (qHA-sps). The ability of supernatant from infected cells to induce amylin or Aß42 aggregation was quantitated. Finally, the amyloidogenic activity of viral peptides was examined. RESULTS: VZV-infected qHA-sps, but not mock-infected qHA-sps, contained intracellular amylin, APP, and/or Aß, and amyloid. No differences in extracellular amylin, Aß40, or Aß42 were detected, yet only supernatant from VZV-infected cells induced amylin aggregation and, to a lesser extent, Aß42 aggregation into amyloid fibrils. VZV glycoprotein B (gB) peptides assembled into fibrils and catalyzed amylin and Aß42 aggregation. CONCLUSIONS: VZV-infected qHA-sps produced intracellular amyloid and their extracellular environment promoted aggregation of cellular peptides into amyloid fibrils that may be due, in part, to VZV gB peptides. These findings suggest that together with host and other environmental factors, VZV infection may increase the toxic amyloid burden and contribute to amyloid-associated disease progression.


Asunto(s)
Péptidos beta-Amiloides , Astrocitos , Polipéptido Amiloide de los Islotes Pancreáticos , Infección por el Virus de la Varicela-Zóster/metabolismo , Aciclovir/farmacología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Antivirales/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/virología , Células Cultivadas , Espacio Extracelular/metabolismo , Humanos , Espacio Intracelular/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
6.
EMBO J ; 34(13): 1759-72, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-25908839

RESUMEN

Directed differentiation of human pluripotent stem cells into functional insulin-producing beta-like cells holds great promise for cell replacement therapy for patients suffering from diabetes. This approach also offers the unique opportunity to study otherwise inaccessible aspects of human beta cell development and function in vitro. Here, we show that current pancreatic progenitor differentiation protocols promote precocious endocrine commitment, ultimately resulting in the generation of non-functional polyhormonal cells. Omission of commonly used BMP inhibitors during pancreatic specification prevents precocious endocrine formation while treatment with retinoic acid followed by combined EGF/KGF efficiently generates both PDX1(+) and subsequent PDX1(+)/NKX6.1(+) pancreatic progenitor populations, respectively. Precise temporal activation of endocrine differentiation in PDX1(+)/NKX6.1(+) progenitors produces glucose-responsive beta-like cells in vitro that exhibit key features of bona fide human beta cells, remain functional after short-term transplantation, and reduce blood glucose levels in diabetic mice. Thus, our simplified and scalable system accurately recapitulates key steps of human pancreas development and provides a fast and reproducible supply of functional human beta-like cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Embrionarias/fisiología , Células Secretoras de Insulina/fisiología , Páncreas/citología , Animales , Glucemia/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/terapia , Células Madre Embrionarias/citología , Glucosa/farmacología , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/trasplante , Ratones , Ratones SCID , Ratones Transgénicos , Estreptozocina
8.
EMBO J ; 33(19): 2135-6, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25154606

RESUMEN

The in vivo assessment of epigenetic changes during mouse pancreatic beta­cell differentiation reveals surprising differences to directed, in vitro differentiation of human embryonic stem cells. New findings reported in this issue of The EMBO Journal further identify Ezh2 as a critical determinant of endocrine progenitor number and could instruct improved protocols for stem cell-based therapies.


Asunto(s)
Células Endocrinas/citología , Histonas/metabolismo , Islotes Pancreáticos/citología , Histona Demetilasas con Dominio de Jumonji/genética , Complejo Represivo Polycomb 2/fisiología , Animales , Proteína Potenciadora del Homólogo Zeste 2 , Humanos
9.
Nat Commun ; 15(1): 588, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238288

RESUMEN

Despite significant research, mechanisms underlying the failure of islet beta cells that result in type 2 diabetes (T2D) are still under investigation. Here, we report that Sox9, a transcriptional regulator of pancreas development, also functions in mature beta cells. Our results show that Sox9-depleted rodent beta cells have defective insulin secretion, and aging animals develop glucose intolerance, mimicking the progressive degeneration observed in T2D. Using genome editing in human stem cells, we show that beta cells lacking SOX9 have stunted first-phase insulin secretion. In human and rodent cells, loss of Sox9 disrupts alternative splicing and triggers accumulation of non-functional isoforms of genes with key roles in beta cell function. Sox9 depletion reduces expression of protein-coding splice variants of the serine-rich splicing factor arginine SRSF5, a major splicing enhancer that regulates alternative splicing. Our data highlight the role of SOX9 as a regulator of alternative splicing in mature beta cell function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Humanos , Empalme Alternativo/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Empalme del ARN
10.
J Biol Chem ; 287(21): 17269-17280, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22457355

RESUMEN

In vitro expansion of ß-cells from adult human pancreatic islets would overcome donor ß-cell shortage for cell replacement therapy for diabetes. Using a ß-cell-specific labeling system we have shown that ß-cell expansion is accompanied by dedifferentiation resembling epithelial-mesenchymal transition and loss of insulin expression. Epigenetic analyses indicate that key ß-cell genes maintain open chromatin structure in expanded ß-cell-derived (BCD) cells, although they are not transcribed. In the developing pancreas important cell-fate decisions are regulated by NOTCH receptors, which signal through the Hairy and Enhancer of Split 1 (HES1) transcription regulator. We have reported that BCD cell dedifferentiation and proliferation in vitro correlate with reactivation of the NOTCH pathway. Inhibition of HES1 expression using shRNA during culture initiation results in reduced ß-cell replication and dedifferentiation, suggesting that HES1 inhibition may also affect BCD cell redifferentiation following expansion. Here, we used HES1 shRNA to down-regulate HES1 expression in expanded human BCD cells, showing that HES1 inhibition is sufficient to induce BCD cell redifferentiation, as manifested by a significant increase in insulin expression. Combined treatment with HES1 shRNA, cell aggregation in serum-free medium, and a mixture of soluble factors further stimulated the redifferentiation of BCD cells. In vivo analyses demonstrated the ability of the redifferentiated cells to replace ß-cell function in hyperglycemic immunodeficient mice. These findings demonstrate the redifferentiation potential of ex vivo expanded BCD cells and the reproducible differentiating effect of HES1 inhibition in these cells.


Asunto(s)
Desdiferenciación Celular , Células Secretoras de Insulina/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Adolescente , Adulto , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular , Células Cultivadas , Epigénesis Genética/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Humanos , Insulina/biosíntesis , Células Secretoras de Insulina/citología , Masculino , Persona de Mediana Edad , Factor de Transcripción HES-1
11.
Cells ; 12(5)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36899834

RESUMEN

Cell replacement therapy using stem-cell-derived insulin-producing ß-like cells (sBCs) has been proposed as a practical cure for patients with type one diabetes (T1D). sBCs can correct diabetes in preclinical animal models, demonstrating the promise of this stem cell-based approach. However, in vivo studies have demonstrated that most sBCs, similarly to cadaveric human islets, are lost upon transplantation due to ischemia and other unknown mechanisms. Hence, there is a critical knowledge gap in the current field concerning the fate of sBCs upon engraftment. Here we review, discuss effects, and propose additional potential mechanisms that could contribute toward ß-cell loss in vivo. We summarize and highlight some of the literature on phenotypic loss in ß-cells under both steady, stressed, and diseased diabetic conditions. Specifically, we focus on ß-cell death, dedifferentiation into progenitors, trans-differentiation into other hormone-expressing cells, and/or interconversion into less functional ß-cell subtypes as potential mechanisms. While current cell replacement therapy efforts employing sBCs carry great promise as an abundant cell source, addressing the somewhat neglected aspect of ß-cell loss in vivo will further accelerate sBC transplantation as a promising therapeutic modality that could significantly enhance the life quality of T1D patients.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Animales , Humanos , Diabetes Mellitus Tipo 1/terapia , Insulina/metabolismo , Células Madre/metabolismo , Células Secretoras de Insulina/metabolismo , Diferenciación Celular
12.
Stem Cell Reports ; 18(6): 1284-1294, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37315522

RESUMEN

Transplantation of limited human cadaveric islets into type 1 diabetic patients results in ∼35 months of insulin independence. Direct differentiation of stem cell-derived insulin-producing beta-like cells (sBCs) that can reverse diabetes in animal models effectively removes this shortage constraint, but uncontrolled graft growth remains a concern. Current protocols do not generate pure sBCs, but consist of only 20%-50% insulin-expressing cells with additional cell types present, some of which are proliferative. Here, we show the selective ablation of proliferative cells marked by SOX9 by simple pharmacological treatment in vitro. This treatment concomitantly enriches for sBCs by ∼1.7-fold. Treated sBC clusters show improved function in vitro and in vivo transplantation controls graft size. Overall, our study provides a convenient and effective approach to enrich for sBCs while minimizing the presence of unwanted proliferative cells and thus has important implications for current cell therapy approaches.


Asunto(s)
Insulina , Páncreas , Animales , Humanos , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre
13.
Mol Metab ; 78: 101809, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37734713

RESUMEN

BACKGROUND: T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW: Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS: The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Ratones , Animales , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Factores de Riesgo
14.
Stem Cell Reports ; 18(4): 829-840, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36963390

RESUMEN

The thymus is critical for the establishment of a functional and self-tolerant adaptive immune system but involutes with age, resulting in reduced naive T cell output. Generation of a functional human thymus from human pluripotent stem cells (hPSCs) is an attractive regenerative strategy. Direct differentiation of thymic epithelial progenitors (TEPs) from hPSCs has been demonstrated in vitro, but functional thymic epithelial cells (TECs) only form months after transplantation of TEPs in vivo. We show the generation of TECs in vitro in isogenic stem cell-derived thymic organoids (sTOs) consisting of TEPs, hematopoietic progenitor cells, and mesenchymal cells, differentiated from the same hPSC line. sTOs support T cell development, express key markers of negative selection, including the autoimmune regulator (AIRE) protein, and facilitate regulatory T cell development. sTOs provide the basis for functional patient-specific thymic organoid models, allowing for the study of human thymus function, T cell development, and transplant immunity.


Asunto(s)
Células Madre Pluripotentes , Timo , Humanos , Linfocitos T , Células Epiteliales/metabolismo , Diferenciación Celular/fisiología , Organoides
15.
Nat Cell Biol ; 25(8): 1146-1156, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550515

RESUMEN

Cellular reprogramming by only small molecules holds enormous potentials for regenerative medicine. However, chemical reprogramming remains a slow process and labour intensive, hindering its broad applications and the investigation of underlying molecular mechanisms. Here, through screening of over 21,000 conditions, we develop a fast chemical reprogramming (FCR) system, which significantly improves the kinetics of cell identity rewiring. We find that FCR rapidly goes through an interesting route for pluripotent reprogramming, uniquely transitioning through a developmentally diapause-like state. Furthermore, FCR critically enables comprehensive characterizations using multi-omics technologies, and has revealed unexpected important features including key regulatory factors and epigenetic dynamics. Particularly, activation of pluripotency-related endogenous retroviruses via inhibition of heterochromatin significantly enhances reprogramming. Our studies provide critical insights into how only environmental cues are sufficient to rapidly reinstate pluripotency in somatic cells, and make notable technical and conceptual advances for solving the puzzle of regeneration.


Asunto(s)
Diapausa , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Reprogramación Celular/genética , Técnicas de Reprogramación Celular , Medicina Regenerativa
16.
Cell Metab ; 34(2): 193-196, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108510

RESUMEN

Islet transplantation has proven to be an effective treatment for type 1 diabetes (T1D) yet is hampered by the shortage of available tissue. Recently, two reports from a Viacyte multicenter clinical trial demonstrate the feasibility, safety, and potential efficacy of transplanting macro-encapsulated human stem cell-derived pancreatic endoderm cells into patients with T1D, highlighting the promise of a stem cell-based therapeutic approach.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Diferenciación Celular , Diabetes Mellitus Tipo 1/terapia , Endodermo , Humanos , Células Madre
17.
Mol Metab ; 66: 101610, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36209784

RESUMEN

BACKGROUND: Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic insulin-producing ß cells are specifically destroyed by the immune system. Understanding the initiation and progression of human T1D has been hampered by the lack of appropriate models that can reproduce the complexity and heterogeneity of the disease. The development of platforms combining multiple human pluripotent stem cell (hPSC) derived tissues to model distinct aspects of T1D has the potential to provide critical novel insights into the etiology and pathogenesis of the human disease. SCOPE OF REVIEW: In this review, we summarize the state of hPSC differentiation approaches to generate cell types and tissues relevant to T1D, with a particular focus on pancreatic islet cells, T cells, and thymic epithelium. We present current applications as well as limitations of using these hPSC-derived cells for disease modeling and discuss efforts to optimize platforms combining multiple cell types to model human T1D. Finally, we outline remaining challenges and emphasize future improvements needed to accelerate progress in this emerging field of research. MAJOR CONCLUSIONS: Recent advances in reprogramming approaches to create patient-specific induced pluripotent stem cell lines (iPSCs), genome engineering technologies to efficiently modify DNA of hPSCs, and protocols to direct their differentiation into mature cell types have empowered the use of stem cell derivatives to accurately model human disease. While challenges remain before complex interactions occurring in human T1D can be modeled with these derivatives, experiments combining hPSC-derived ß cells and immune cells are already providing exciting insight into how these cells interact in the context of T1D, supporting the viability of this approach.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Células Madre Pluripotentes , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Células Madre Pluripotentes/metabolismo , Células Secretoras de Insulina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular
18.
Front Endocrinol (Lausanne) ; 13: 989815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506044

RESUMEN

There is a critical need for therapeutic approaches that combine renewable sources of replacement beta cells with localized immunomodulation to counter recurrence of autoimmunity in type 1 diabetes (T1D). However, there are few examples of animal models to study such approaches that incorporate spontaneous autoimmunity directed against human beta cells rather than allogenic rejection. Here, we address this critical limitation by demonstrating rejection and survival of transplanted human stem cell-derived beta-like cells clusters (sBCs) in a fully immune competent mouse model with matching human HLA class I and spontaneous diabetes development. We engineered localized immune tolerance toward transplanted sBCs via inducible cell surface overexpression of PD-L1 (iP-sBCs) with and without deletion of all HLA class I surface molecules via beta-2 microglobulin knockout (iP-BKO sBCs). NOD.HLA-A2.1 mice, which lack classical murine MHC I and instead express human HLA-A*02:01, underwent transplantation of 1,000 human HLA-A*02:01 sBCs under the kidney capsule and were separated into HLA-A2 positive iP-sBC and HLA-class I negative iP-BKO sBC groups, each with +/- doxycycline (DOX) induced PD-L1 expression. IVIS imaging showed significantly improved graft survival in mice transplanted with PD-L1 expressing iP-sBC at day 3 post transplantation compared to controls. However, luciferase signal dropped below in vivo detection limits by day 14 for all groups in this aggressive immune competent diabetes model. Nonetheless, histological examination revealed significant numbers of surviving insulin+/PD-L1+ sBCs cells for DOX-treated mice at day 16 post-transplant despite extensive infiltration with high numbers of CD3+ and CD45+ immune cells. These results show that T cells rapidly infiltrate and attack sBC grafts in this model but that significant numbers of PD-L1 expressing sBCs manage to survive in this harsh immunological environment. This investigation represents one of the first in vivo studies recapitulating key aspects of human autoimmune diabetes to test immune tolerance approaches with renewable sources of beta cells.


Asunto(s)
Diabetes Mellitus Tipo 1 , Supervivencia de Injerto , Humanos , Ratones , Animales , Ratones Endogámicos NOD , Antígeno B7-H1/genética , Antígeno HLA-A2 , Células Madre , Diabetes Mellitus Tipo 1/cirugía
19.
Cells ; 11(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36497105

RESUMEN

Type 1 diabetes is a polygenic disease that results in an autoimmune response directed against insulin-producing beta cells. PTPN2 is a known high-risk type 1 diabetes associated gene expressed in both immune- and pancreatic beta cells, but how genes affect the development of autoimmune diabetes is largely unknown. We employed CRISPR/Cas9 technology to generate a functional knockout of PTPN2 in human pluripotent stem cells (hPSC) followed by differentiating stem-cell-derived beta-like cells (sBC) and detailed phenotypical analyses. The differentiation efficiency of PTPN2 knockout (PTPN2 KO) sBC is comparable to wild-type (WT) control sBC. Global transcriptomics and protein assays revealed the increased expression of HLA Class I molecules in PTPN2 KO sBC at a steady state and upon exposure to proinflammatory culture conditions, indicating a potential for the increased immune recognition of human beta cells upon differential PTPN2 expression. sBC co-culture with autoreactive preproinsulin-reactive T cell transductants confirmed increased immune stimulations by PTPN2 KO sBC compared to WT sBC. Taken together, our results suggest that the dysregulation of PTPN2 expression in human beta cell may prime autoimmune T cell reactivity and thereby contribute to the development of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Células Madre Pluripotentes , Humanos , Diabetes Mellitus Tipo 1/genética , Linfocitos T , Diferenciación Celular , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética
20.
Pediatr Endocrinol Rev ; 9(2): 590-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22397143

RESUMEN

Diabetes mellitus is characterized by the loss of insulin-producing beta cells. While conventional treatment results in severe long-term complications, cell replacement therapy is a promising approach for the cure of this disease. However, its application is severally limited by the shortage of donor tissue. Hence, great research efforts concentrate on the development of an abundant cell source of functional beta-like cells, by pursuing three main strategies: Expansion of human donor beta cells in vitro, reprogramming of other cell types, and directed differentiation of pluripotent stem cells, both embryonic and patient-derived. The goal of all these approaches has been the generation of cells with properties that closely resemble the beta-cell phenotype, in particular production and storage of adequate amounts of mature insulin, and its regulated release in response to physiological signals. Here we review recent progress in all three approaches and discuss their advantages as well as remaining challenges.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Diabetes Mellitus/terapia , Células Secretoras de Insulina/trasplante , Técnicas de Cultivo de Tejidos/métodos , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Reprogramación Celular/fisiología , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Trasplante de Islotes Pancreáticos/métodos , Trasplante de Islotes Pancreáticos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA