Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 7(8): e1002238, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21901106

RESUMEN

Maintaining genome stability in the germline is thought to be an evolutionarily ancient role of the p53 family. The sole Caenorhabditis elegans p53 family member CEP-1 is required for apoptosis induction in meiotic, late-stage pachytene germ cells in response to DNA damage and meiotic recombination failure. In an unbiased genetic screen for negative regulators of CEP-1, we found that increased activation of the C. elegans ERK orthologue MPK-1, resulting from either loss of the lip-1 phosphatase or activation of let-60 Ras, results in enhanced cep-1-dependent DNA damage induced apoptosis. We further show that MPK-1 is required for DNA damage-induced germ cell apoptosis. We provide evidence that MPK-1 signaling regulates the apoptotic competency of germ cells by restricting CEP-1 protein expression to cells in late pachytene. Restricting CEP-1 expression to cells in late pachytene is thought to ensure that apoptosis doesn't occur in earlier-stage cells where meiotic recombination occurs. MPK-1 signaling regulates CEP-1 expression in part by regulating the levels of GLD-1, a translational repressor of CEP-1, but also via a GLD-1-independent mechanism. In addition, we show that MPK-1 is phosphorylated and activated upon ionising radiation (IR) in late pachytene germ cells and that MPK-1-dependent CEP-1 activation may be in part direct, as these two proteins interact in a yeast two-hybrid assay. In summary, we report our novel finding that MAP kinase signaling controls CEP-1-dependent apoptosis by several different pathways that converge on CEP-1. Since apoptosis is also restricted to pachytene stage cells in mammalian germlines, analogous mechanisms regulating p53 family members are likely to be conserved throughout evolution.


Asunto(s)
Apoptosis , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Daño del ADN , Regulación del Desarrollo de la Expresión Génica , Genes p53 , Células Germinativas/citología , Células Germinativas/metabolismo , Sistema de Señalización de MAP Quinasas , Meiosis , Proteína Quinasa 1 Activada por Mitógenos/genética , Fase Paquiteno/genética , Proteínas Tirosina Fosfatasas/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Técnicas del Sistema de Dos Híbridos , Proteínas ras/genética
2.
Science ; 337(6092): 351-4, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22822152

RESUMEN

Defective catabolite export from lysosomes results in lysosomal storage diseases in humans. Mutations in the cystine transporter gene CTNS cause cystinosis, but other lysosomal amino acid transporters are poorly characterized at the molecular level. Here, we identified the Caenorhabditis elegans lysosomal lysine/arginine transporter LAAT-1. Loss of laat-1 caused accumulation of lysine and arginine in enlarged, degradation-defective lysosomes. In mutants of ctns-1 (C. elegans homolog of CTNS), LAAT-1 was required to reduce lysosomal cystine levels and suppress lysosome enlargement by cysteamine, a drug that alleviates cystinosis by converting cystine to a lysine analog. LAAT-1 also maintained availability of cytosolic lysine/arginine during embryogenesis. Thus, LAAT-1 is the lysosomal lysine/arginine transporter, which suggests a molecular explanation for how cysteamine alleviates a lysosomal storage disease.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lisina/metabolismo , Lisosomas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Animales , Células COS , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Chlorocebus aethiops , Cisteamina/metabolismo , Homeostasis , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/genética
3.
Nat Cell Biol ; 12(7): 638-40, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20526326

RESUMEN

Recognition of apoptotic cells by phagocytic cells in Caenorhabditis elegans has been something of a mystery. A secreted transthyretin-like protein, TTR-52, has been identified as a bridging molecule between apoptotic cells and CED-1 on the phagocytic cells that engulf them.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos
4.
Cold Spring Harb Perspect Biol ; 2(7): a001131, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20595397

RESUMEN

The origin of the p53 superfamily predates animal evolution and first appears in unicellular Flagellates. Invertebrate p53 superfamily members appear to have a p63-like domain structure, which seems to be evolutionarily ancient. The radiation into p53, p63, and p73 proteins is a vertebrate invention. In invertebrate models amenable to genetic analysis p53 superfamily members mainly act in apoptosis regulation in response to genotoxic agents and do not have overt developmental functions. We summarize the literature on cnidarian and mollusc p53 superfamily members and focus on the function and regulation of Drosophila melanogaster and Caenorhabditis elegans p53 superfamily members in triggering apoptosis. Furthermore, we examine the emerging evidence showing that invertebrate p53 superfamily proteins also have functions unrelated to apoptosis, such as DNA repair, cell cycle checkpoint responses, compensatory proliferation, aging, autophagy, and innate immunity.


Asunto(s)
Invertebrados/fisiología , Filogenia , Proteína p53 Supresora de Tumor/fisiología , Animales , Invertebrados/clasificación , Proteína p53 Supresora de Tumor/genética
5.
Dev Dyn ; 238(5): 1131-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19326441

RESUMEN

The Drosophila gene deflated (CG18176; renamed after the pupal lethal abdominal phenotype of mutant individuals) is a member of a conserved gene family found in all multicellular organisms. The human orthologue of deflated (Ints7) encodes a subunit of the Integrator complex that associates with RNA polymerase II and has been implicated in snRNA processing. Since loss-of-function analyses of deflated have not yet been reported, we undertook to investigate deflated expression patterns and mutant phenotypes. deflated mRNA was detected at low levels in proliferating cells in postblastoderm embryos and GFP tagged protein is predominately nuclear. Generation and analysis of four mutant alleles revealed deflated is essential for normal development, as mutant individuals displayed pleiotropic defects affecting many stages of development, consistent with perturbation of cell signalling or cell proliferation. Our data demonstrate multiple roles in development for an Ints7 homologue and to demonstrate its requirement for normal cell signalling and proliferation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Alelos , Secuencia de Aminoácidos , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Humanos , Ratones , Datos de Secuencia Molecular , Fenotipo , ARN Mensajero/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA