RESUMEN
This work presents a new look at the application of cyclodextrins (CD) as a drug nanocarrier. Two different cyclodextrins (αCD, ßCD) were covalently conjugated to branched polyethylenimine (PEI), which was additionally functionalized with folic acid (PEI-ßCD-αCD-FA). Here, we demonstrated that the combination of αCD and ßCD enabled to load and control release of two anticancer drugs: doxorubicin (DOX) and beta-lapachone (beta-LP) (DOX in ß-CD and beta-LP into α-CD) via host-guest inclusion. The PEI-ßCD(DOX)-αCD-FA nanoconjugate was used to transport anticancer drugs into A549 lung cancer cells for estimation the cytotoxic and antitumor effect of this nanoconjugate. The presence of FA molecules should facilitate the penetration of studied nanoconjugate into the cell. Whereas, the non-cellular experiments proved that the drugs are released from the carrier mainly in the pH 4.0. The release mechanism is found to be anomalous in all studied cases.
Asunto(s)
Ciclodextrinas/química , Doxorrubicina/farmacología , Naftoquinonas/farmacología , Polietileneimina/química , Células A549 , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada , Doxorrubicina/química , Portadores de Fármacos/química , Liberación de Fármacos , Dispersión Dinámica de Luz , Ácido Fólico/farmacología , Humanos , Hidrodinámica , Cinética , Nanoconjugados/química , Naftoquinonas/química , Tamaño de la Partícula , Polímeros/química , Espectroscopía de Protones por Resonancia Magnética , Tecnicas de Microbalanza del Cristal de Cuarzo , Espectrofotometría UltravioletaRESUMEN
The incidence of lung cancer continues to rise worldwide. Because the aggressive metastasis of lung cancer cells is the major drawback of successful therapies, the crucial challenge of modern nanomedicine is to develop diagnostic tools to map the molecular mechanisms of metastasis in lung cancer patients. In recent years, microfluidic platforms have been given much attention as tools for novel point-of-care diagnostic, an important aspect being the reconstruction of the body organs and tissues mimicking the in vivo conditions in one simple microdevice. Herein, we present the first comprehensive overview of the microfluidic systems used as innovative tools in the studies of lung cancer metastasis including single cancer cell analysis, endothelial transmigration, distant niches migration and finally neoangiogenesis. The application of the microfluidic systems to study the intercellular crosstalk between lung cancer cells and surrounding tumor microenvironment and the connection with multiple molecular signals coming from the external cellular matrix are discussed. We also focus on recent breakthrough technologies regarding lab-on-chip devices that serve as tools for detecting circulating lung cancer cells. The superiority of microfluidic systems over traditional in vitro cell-based assays with regard to modern nanosafety studies and new cancer drug design and discovery is also addressed. Finally, the current progress and future challenges regarding printable and paper-based microfluidic devices for personalized nanomedicine are summarized.
Asunto(s)
Neoplasias Pulmonares/diagnóstico , Técnicas Analíticas Microfluídicas/métodos , Nanoestructuras/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Materiales Biomiméticos/química , Movimiento Celular , Humanos , Dispositivos Laboratorio en un Chip , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/patología , Técnicas Analíticas Microfluídicas/instrumentación , Nanomedicina , Nanoestructuras/efectos adversos , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Nanomedicina Teranóstica , Microambiente TumoralRESUMEN
Worldwide, drug-induced liver injury (DILI) is a major cause of hepatic failure. It is also the leading cause of withdrawal, cautionary labeling, and restricted usage of licensed drugs; therefore, European Medicines Agency (EMA) and United States Food and Drug Administration (FDA) warn that the existing methods of assessing DILI are insufficient and that some of the translational biomarkers of hepatotoxicity must be relooked. Magnetic resonance imaging (MRI) seems to be a proper tool in elucidating the effects of DILI in both preclinical and clinical studies, providing excellent visualization of the morphology of the liver parenchyma. Therefore, herein, we propose preclinical MRI assessment of liver injury in experimental paracetamol-treated rats. Quantitative MRI clearly provides evidence of adverse effects in the liver tissue caused by a single overdose of paracetamol (1â¯gâ¯kg-1 and 1.5â¯gâ¯kg-1 b.w.). The results of the MRI were confirmed by the histopathological examination (H&E) of the rat liver specimen, however the adverse effects were not disclosed due to standard aminotransferase assays (ALT/AST) in rat blood serum. The results of our analysis demonstrate the successful application of MRI in the examination of paracetamol-induced hepatotoxicity in rats; it has a potential to serve as the early diagnostic tool for the prediction of DILI in preclinical evaluation.
Asunto(s)
Acetaminofén/efectos adversos , Analgésicos/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico por imagen , Imagen por Resonancia Magnética , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Evaluación Preclínica de Medicamentos , Femenino , Hígado/diagnóstico por imagen , Hígado/efectos de los fármacos , Hígado/patología , Ratas WistarRESUMEN
Cyanides are infamous for their highly poisonous properties. Accidental cyanide poisoning occurs frequently, but occasionally, intentional poisonings also occur. Inhalation of fumes generated by fire may also cause cyanide poisoning. There are many limitations in direct analysis of cyanide. 2-Aminothiazoline-4-carboxylic acid (ATCA), a cyanide metabolite, seems to be the only surrogate that is being used in the detection of cyanide because of its stability and its cyanide-dependent quality in a biological matrix. Unfortunately, toxicokinetic studies on diverse animal models suggest significant interspecies differences; therefore, the attempt to extrapolate animal models to human models may be unsuccessful. The aim of the present study was to evaluate the use of ATCA as a forensic marker of cyanide exposure. For this purpose, post-mortem materials (blood and organs) from fire victims (n = 32) and cyanide-poisoned persons (n = 3) were collected. The distribution of ATCA in organs and its thermal stability were evaluated. The variability of cyanides in a putrid sample and in the context of their long-term and higher temperature stability was established. The presence of ATCA was detected by using an LC-MS/MS method and that of cyanide was detected spectrofluorimetrically. This is the first report on the endogenous ATCA concentrations and the determination of ATCA distribution in tissues of fire victims and cyanide-poisoned persons. It was found that blood and heart had the highest ATCA concentrations. ATCA was observed to be thermally stable even at 90 °C. Even though the cyanide concentration was not elevated in putrid samples, it was unstable during long-term storage and at higher temperature, as expected. The relationship between ATCA and cyanides was also observed. Higher ATCA concentrations were related to increased levels of cyanide in blood and organs (less prominent). ATCA seems to be a reliable forensic marker of exposure to lethal doses of cyanide.
Asunto(s)
Biomarcadores/análisis , Cianuros/toxicidad , Tiazoles/análisis , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
In this paper, we proposed an innovative hydrophilic interaction dispersive solid-phase extraction (HI-d-SPE) protocol suitable for the isolation of the potential cyanide intoxication marker, 2-aminothiazoline-4-carboxylic acid (ATCA), from such complicated matrix as post-mortem blood. To create an optimal HI-d-SPE protocol, two sorbents were used: a molecularly imprinted polymer (MIP) and commercially available Oasis-MCX®. The latter sorbent was identified as more recovery-efficient with higher clean-up abilities in a carefully optimized process. Computational analysis was employed to provide insight into the adsorption mechanism of the two selected sorbents. The theoretical results were in agreement with the experiment regarding the efficiency of the sorbent. HI-d-SPE was successfully applied to the analysis of ATCA in 20 post-mortem blood samples using LC-MS/MS. The analytical performance of the method was finally compared to prior existing methods, in turn revealing its superiority.
Asunto(s)
Biomarcadores/sangre , Técnicas y Procedimientos Diagnósticos , Extracción en Fase Sólida/métodos , Tiazoles/sangre , Tiazoles/aislamiento & purificación , Adsorción , Cromatografía Liquida , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros , Reproducibilidad de los Resultados , Espectrometría de Masas en TándemRESUMEN
Dwelling fires have changed over the years because building contents and the materials used in then have changed. They all contribute to an ever-growing diversity of chemical species found in fires, many of them highly toxic. These arise largely from the changing nature of materials in interior finishes and furniture, with an increasing content of synthetic materials containing higher levels of nitrogen, halogen and phosphorus additives. While there is still a belief that carbon monoxide is the major lethal toxic agent in fires, the hydrogen cyanide and acid gases released from these additives are now well-recognised as major contributory causes of incapacitation, morbidity and mortality in domestic fires. Data for the total number of 263 fire death cases in the Mazowieckie region (mainly Warsaw area) of Poland between 2003-2011 for dwellings fires were obtained from pathologists, forensic toxicologists, fire fighters and analysed. Factors contributing to the death such as the findings of the full post mortem examination (age, sex, health status, burns), the toxicological analysis (carbon monoxide, alcohol etc.), and a thorough investigation of the scene (fire conditions, fuel, etc.) were taken into account and are summarised.
Asunto(s)
Incendios/estadística & datos numéricos , Lesión por Inhalación de Humo/mortalidad , Adulto , Distribución por Edad , Anciano , Consumo de Bebidas Alcohólicas/epidemiología , Quemaduras/mortalidad , Intoxicación por Monóxido de Carbono/mortalidad , Carboxihemoglobina/análisis , Femenino , Vivienda , Humanos , Puntaje de Gravedad del Traumatismo , Masculino , Persona de Mediana Edad , Polonia/epidemiología , Distribución por Sexo , Humo/efectos adversos , Humo/análisis , Hollín/análisis , Adulto JovenRESUMEN
2-aminothiazoline-4-carboxylic acid (ATCA) is a hydrogen cyanide metabolite that has been found to be a reliable biomarker of cyanide poisoning, because of its long-term stability in biological material. There are several methods of ATCA determination; however, they are restricted to extraction on mixed mode cation exchange sorbents. To date, there has been no reliable method of ATCA determination in whole blood, the most frequently used material in forensic analysis. This novel method for ATCA determination in post mortem specimen includes protein precipitation, and derivatization of interfering compounds and their later extraction with ethyl acetate. ATCA was quantitatively analyzed via high performance liquid chromatography-tandem mass spectrometry with positive electrospray ionization detection using a hydrophilic interaction liquid chromatography column. The method satisfied all validation criteria and was tested on the real samples with satisfactory results. Therefore, this analytical approach has been proven to be a tool for measuring endogenous levels of ATCA in post mortem specimens. To conclude, a novel, accurate and sensitive method of ATCA determination in post mortem blood was developed. The establishment of the method provides new possibilities in the field of forensic science.