Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2314604121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748581

RESUMEN

We developed a significantly improved genetically encoded quantitative adenosine triphosphate (ATP) sensor to provide real-time dynamics of ATP levels in subcellular compartments. iATPSnFR2 is a variant of iATPSnFR1, a previously developed sensor that has circularly permuted superfolder green fluorescent protein (GFP) inserted between the ATP-binding helices of the ε-subunit of a bacterial F0-F1 ATPase. Optimizing the linkers joining the two domains resulted in a ~fivefold to sixfold improvement in the dynamic range compared to the previous-generation sensor, with excellent discrimination against other analytes, and affinity variants varying from 4 µM to 500 µM. A chimeric version of this sensor fused to either the HaloTag protein or a suitable spectrally separated fluorescent protein provides an optional ratiometric readout allowing comparisons of ATP across cellular regions. Subcellular targeting the sensor to nerve terminals reveals previously uncharacterized single-synapse metabolic signatures, while targeting to the mitochondrial matrix allowed direct quantitative probing of oxidative phosphorylation dynamics.


Asunto(s)
Adenosina Trifosfato , Proteínas Fluorescentes Verdes , Animales , Humanos , Adenosina Trifosfato/análisis , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Técnicas Biosensibles/métodos , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Fosforilación Oxidativa , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética
2.
J Neurochem ; 168(5): 910-954, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38183680

RESUMEN

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Asunto(s)
Encéfalo , Metabolismo Energético , Animales , Humanos , Encéfalo/metabolismo
3.
Clin Transplant ; 38(4): e15296, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38545928

RESUMEN

INTRODUCTION: Clinical success of donation after circulatory death (DCD) heart transplantation is leading to growing adoption of this technique. In comparison to procurement from a brain-dead donor, DCD requires additional resources. The economic impact of DCD heart transplantation from the hospital perspective is not well known. METHODS: We compared the financial data of patients who received DCD allografts to those who received a DBD organ at our institution from January 1, 2021 to December 31, 2022. We also compared the cost of ex-situ machine perfusion to in-situ organ perfusion employed during DCD recovery. RESULTS: We performed 58 DBD and 22 DCD heart-alone transplantations during the study period. Out of 22 DCD grafts, 16 were recovered with thoracoabdominal normothermic regional perfusion (TA-NRP) and six with direct procurement followed by normothermic machine perfusion (DP-NMP). The contribution margin per case for DBD versus DCD was $234,362 and $235,440 (P = .72). The direct costs did not significantly differ between the two groups ($171,949 and 186,250; P = .49). In comparing the two methods of procuring hearts from DCD donors, the direct cost of TA-NRP was $155,955 in comparison to $223,399 for DP-NMP (P = .21). This difference translated into a clinically meaningful but not statistically significant greater contribution margin for TA-NRP ($242, 657 vs. $175,768; P = .34). CONCLUSIONS: Our data showed that the adoption of DCD procurement did not have a negative financial impact on the contribution margin in our institution. Programs considering starting DCD heart transplantation, and those who are currently performing DCD procurement should evaluate their own financial situation.


Asunto(s)
Trasplante de Corazón , Obtención de Tejidos y Órganos , Humanos , Trasplante de Corazón/métodos , Donantes de Tejidos , Perfusión/métodos , Muerte Encefálica , Muerte , Preservación de Órganos/métodos , Supervivencia de Injerto
4.
bioRxiv ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38895313

RESUMEN

The ketogenic diet is an effective treatment for drug-resistant epilepsy, but the therapeutic mechanisms are poorly understood. Although ketones are able to fuel the brain, it is not known whether ketones are directly metabolized by neurons on a time scale sufficiently rapid to fuel the bioenergetic demands of sustained synaptic transmission. Here, we show that nerve terminals can use the ketone ß-hydroxybutyrate in a cell- autonomous fashion to support neurotransmission in both excitatory and inhibitory nerve terminals and that this flexibility relies on Ca2+ dependent upregulation of mitochondrial metabolism. Using a genetically encoded ATP sensor, we show that inhibitory axons fueled by ketones sustain much higher ATP levels under steady state conditions than excitatory axons, but that the kinetics of ATP production following activity are slower when using ketones as fuel compared to lactate/pyruvate for both excitatory and inhibitory neurons.

5.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405980

RESUMEN

The endoplasmic reticulum (ER) is an important regulator of Ca2+ in cells and dysregulation of ER calcium homeostasis can lead to numerous pathologies. Understanding how various pharmacological and genetic perturbations of ER Ca2+ homeostasis impacts cellular physiology would likely be facilitated by more quantitative measurements of ER Ca2+ levels that allow easier comparisons across conditions. Here, we developed a ratiometric version of our original ER-GCaMP probe that allows for more quantitative comparisons of the concentration of Ca2+ in the ER across cell types and sub-cellular compartments. Using this approach we show that the resting concentration of ER Ca2+ in primary dissociated neurons is substantially lower than that in measured in embryonic fibroblasts.

6.
PLoS One ; 19(3): e0300708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38517926

RESUMEN

Researchers are increasingly using insights derived from large-scale, electronic healthcare data to inform drug development and provide human validation of novel treatment pathways and aid in drug repurposing/repositioning. The objective of this study was to determine whether treatment of patients with multiple sclerosis with dimethyl fumarate, an activator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, results in a change in incidence of type 2 diabetes and its complications. This retrospective cohort study used administrative claims data to derive four cohorts of adults with multiple sclerosis initiating dimethyl fumarate, teriflunomide, glatiramer acetate or fingolimod between January 2013 and December 2018. A causal inference frequentist model averaging framework based on machine learning was used to compare the time to first occurrence of a composite endpoint of type 2 diabetes, cardiovascular disease or chronic kidney disease, as well as each individual outcome, across the four treatment cohorts. There was a statistically significantly lower risk of incidence for dimethyl fumarate versus teriflunomide for the composite endpoint (restricted hazard ratio [95% confidence interval] 0.70 [0.55, 0.90]) and type 2 diabetes (0.65 [0.49, 0.98]), myocardial infarction (0.59 [0.35, 0.97]) and chronic kidney disease (0.52 [0.28, 0.86]). No differences for other individual outcomes or for dimethyl fumarate versus the other two cohorts were observed. This study effectively demonstrated the use of an innovative statistical methodology to test a clinical hypothesis using real-world data to perform early target validation for drug discovery. Although there was a trend among patients treated with dimethyl fumarate towards a decreased incidence of type 2 diabetes, cardiovascular disease and chronic kidney disease relative to other disease-modifying therapies-which was statistically significant for the comparison with teriflunomide-this study did not definitively support the hypothesis that Nrf2 activation provided additional metabolic disease benefit in patients with multiple sclerosis.


Asunto(s)
Enfermedades Cardiovasculares , Crotonatos , Diabetes Mellitus Tipo 2 , Hidroxibutiratos , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Nitrilos , Insuficiencia Renal Crónica , Toluidinas , Adulto , Humanos , Inmunosupresores/uso terapéutico , Dimetilfumarato/uso terapéutico , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Estudios Retrospectivos , Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Incidencia , Factor 2 Relacionado con NF-E2 , Clorhidrato de Fingolimod/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico
7.
Sci Adv ; 10(34): eadn6016, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39167658

RESUMEN

Although certain drivers of familial Parkinson's disease (PD) compromise mitochondrial integrity, whether metabolic deficits underly other idiopathic or genetic origins of PD is unclear. Here, we demonstrate that phosphoglycerate kinase 1 (PGK1), a gene in the PARK12 susceptibility locus, is rate limiting in neuronal glycolysis and that modestly increasing PGK1 expression boosts neuronal adenosine 5'-triphosphate production kinetics that is sufficient to suppress PARK20-driven synaptic dysfunction. We found that this activity enhancement depends on the molecular chaperone PARK7/DJ-1, whose loss of function significantly disrupts axonal bioenergetics. In vivo, viral expression of PGK1 confers protection of striatal dopamine axons against metabolic lesions. These data support the notion that bioenergetic deficits may underpin PD-associated pathologies and point to improving neuronal adenosine 5'-triphosphate production kinetics as a promising path forward in PD therapeutics.


Asunto(s)
Neuronas , Enfermedad de Parkinson , Fosfoglicerato Quinasa , Fosfoglicerato Quinasa/metabolismo , Fosfoglicerato Quinasa/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Animales , Neuronas/metabolismo , Ratones , Humanos , Glucólisis , Adenosina Trifosfato/metabolismo , Metabolismo Energético
8.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168251

RESUMEN

Recent advances have expanded the role of lipid droplets (LDs) beyond passive lipid storage, implicating their involvement in various metabolic processes across mammalian tissues. Neuronal LDs, long debated in existence, have been identified in several neural structures, raising questions about their contribution to neurodegenerative disorders. Elucidating the specific chemical makeup of these organelles within neurons is critical for understanding their implication in neural pathologies. This study outlines an improved methodology to stimulate and isolate mature LDs from cultured primary neurons, offering insights into their unique lipid-protein composition. Integrating this method with high-throughput techniques may unveil disease-specific alterations in lipid metabolism, providing avenues for potential therapeutic interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA