Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 89(Suppl 1): S127-S147, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38621748

RESUMEN

The strategies of future medicine are aimed to modernize and integrate quality approaches including early molecular-genetic profiling, identification of new therapeutic targets and adapting design for clinical trials, personalized drug screening (PDS) to help predict and individualize patient treatment regimens. In the past decade, organoid models have emerged as an innovative in vitro platform with the potential to realize the concept of patient-centered medicine. Organoids are spatially restricted three-dimensional clusters of cells ex vivo that self-organize into complex functional structures through genetically programmed determination, which is crucial for reconstructing the architecture of the primary tissue and organs. Currently, there are several strategies to create three-dimensional (3D) tumor systems using (i) surgically resected patient tissue (PDTOs, patient-derived tumor organoids) or (ii) single tumor cells circulating in the patient's blood. Successful application of 3D tumor models obtained by co-culturing autologous tumor organoids (PDTOs) and peripheral blood lymphocytes have been demonstrated in a number of studies. Such models simulate a 3D tumor architecture in vivo and contain all cell types characteristic of this tissue, including immune system cells and stem cells. Components of the tumor microenvironment, such as fibroblasts and immune system cells, affect tumor growth and its drug resistance. In this review, we analyzed the evolution of tumor models from two-dimensional (2D) cell cultures and laboratory animals to 3D tissue-specific tumor organoids, their significance in identifying mechanisms of antitumor response and drug resistance, and use of these models in drug screening and development of precision methods in cancer treatment.


Asunto(s)
Neoplasias , Medicina de Precisión , Animales , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Organoides , Evaluación Preclínica de Medicamentos , Microambiente Tumoral
2.
Biochemistry (Mosc) ; 88(Suppl 1): S123-S149, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37069118

RESUMEN

One of the latest methods in modern molecular biology is labeling genomic loci in living cells using fluorescently labeled Cas protein. The NIH Foundation has made the mapping of the 4D nucleome (the three-dimensional nucleome on a timescale) a priority in the studies aimed to improve our understanding of chromatin organization. Fluorescent methods based on CRISPR-Cas are a significant step forward in visualization of genomic loci in living cells. This approach can be used for studying epigenetics, cell cycle, cellular response to external stimuli, rearrangements during malignant cell transformation, such as chromosomal translocations or damage, as well as for genome editing. In this review, we focused on the application of CRISPR-Cas fluorescence technologies as components of multimodal imaging methods for in vivo mapping of chromosomal loci, in particular, attribution of fluorescence signal to morphological and anatomical structures in a living organism. The review discusses the approaches to the highly sensitive, high-precision labeling of CRISPR-Cas components, delivery of genetically engineered constructs into cells and tissues, and promising methods for molecular imaging.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Genoma , Genómica , Microscopía Fluorescente
3.
Molecules ; 23(5)2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29772716

RESUMEN

Type II restriction⁻modification (RM) systems are the most widespread bacterial antiviral defence mechanisms. DNA methyltransferase SsoII (M.SsoII) from a Type II RM system SsoII regulates transcription in its own RM system in addition to the methylation function. DNA with a so-called regulatory site inhibits the M.SsoII methylation activity. Using circular permutation assay, we show that M.SsoII monomer induces DNA bending of 31° at the methylation site and 46° at the regulatory site. In the M.SsoII dimer bound to the regulatory site, both protein subunits make equal contributions to the DNA bending, and both angles are in the same plane. Fluorescence of TAMRA, 2-aminopurine, and Trp was used to monitor conformational dynamics of DNA and M.SsoII under pre-steady-state conditions by stopped-flow technique. Kinetic data indicate that M.SsoII prefers the regulatory site to the methylation site at the step of initial protein⁻DNA complex formation. Nevertheless, in the presence of S-adenosyl-l-methionine, the induced fit is accelerated in the M.SsoII complex with the methylation site, ensuring efficient formation of the catalytically competent complex. The presence of S-adenosyl-l-methionine and large amount of the methylation sites promote efficient DNA methylation by M.SsoII despite the inhibitory effect of the regulatory site.


Asunto(s)
Bacterias/genética , ADN Bacteriano/química , ADN Bacteriano/metabolismo , ADN-Citosina Metilasas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Metilación de ADN , ADN Bacteriano/genética , ADN-Citosina Metilasas/química , Regulación Bacteriana de la Expresión Génica , Cinética , Conformación Molecular , S-Adenosilmetionina/metabolismo , Transcripción Genética
4.
PLoS One ; 9(4): e93453, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24710319

RESUMEN

(Cytosine-5)-DNA methyltransferase SsoII (M.SsoII) consists of a methyltransferase domain (residues 72-379) and an N-terminal region (residues 1-71) which regulates transcription in SsoII restriction-modification system. Small-angle X-ray scattering (SAXS) is employed here to study the low resolution structure of M.SsoII and its complex with DNA containing the methylation site. The shapes reconstructed ab initio from the SAXS data reveal two distinct protein domains of unequal size. The larger domain matches the crystallographic structure of a homologous DNA methyltransferase HhaI (M.HhaI), and the cleft in this domain is occupied by DNA in the model of the complex reconstructed from the SAXS data. This larger domain can thus be identified as the methyltransferase domain whereas the other domain represents the N-terminal region. Homology modeling of the M.SsoII structure is performed by using the model of M.HhaI for the methyltransferase domain and representing the N-terminal region either as a flexible chain of dummy residues or as a rigid structure of a homologous protein (phage 434 repressor) connected to the methyltransferase domain by a short flexible linker. Both models are compatible with the SAXS data and demonstrate high mobility of the N-terminal region. The linker flexibility might play an important role in the function of M.SsoII as a transcription factor.


Asunto(s)
Proteínas Bacterianas/química , ADN Bacteriano/química , ADN-Citosina Metilasas/química , Transcripción Genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , ADN-Citosina Metilasas/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA