Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Inorg Chem ; 62(27): 10559-10571, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37377337

RESUMEN

The synthesis and structures of nitrile complexes of V(N[tBu]Ar)3, 2 (Ar = 3,5-Me2C6H3), are described. Thermochemical and kinetic data for their formation were determined by variable temperature Fourier transform infrared (FTIR), calorimetry, and stopped-flow techniques. The extent of back-bonding from metal to coordinated nitrile indicates that electron donation from the metal to the nitrile plays a less prominent role for 2 than for the related complex Mo(N[tBu]Ar)3, 1. Kinetic studies reveal similar rate constants for nitrile binding to 2, but the activation parameters depend critically on the nature of R in RCN. Activation enthalpies range from 2.9 to 7.2 kcal·mol-1, and activation entropies from -9 to -28 cal·mol-1·K-1 in an opposing manner. Density functional theory (DFT) calculations provide a plausible explanation supporting the formation of a π-stacking interaction between a pendant arene of the metal anilide of 2 and the arene substituent on the incoming nitrile in favorable cases. Data for ligand binding to 1 do not exhibit this range of activation parameters and are clustered in a small area centered at ΔH‡ = 5.0 kcal·mol-1 and ΔS‡ = -26 cal·mol-1·K-1. Computational studies are in agreement with the experimental data and indicate a stronger dependence on electronic factors associated with the change in spin state upon ligand binding to 1.

2.
Inorg Chem ; 60(18): 13821-13832, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34291939

RESUMEN

Nonheme iron enzymes often utilize a high-valent iron(IV) oxo species for the biosynthesis of natural products, but their high reactivity often precludes structural and functional studies of these complexes. In this work, a combined experimental and computational study is presented on a biomimetic nonheme iron(IV) oxo complex bearing an aminopyridine macrocyclic ligand and its reactivity toward olefin epoxidation upon changes in the identity and coordination ability of the axial ligand. Herein, we show a dramatic effect of the pH on the oxygen-atom-transfer (OAT) reaction with substrates. In particular, these changes have occurred because of protonation of the axial-bound pendant amine group, where its coordination to iron is replaced by a solvent molecule or anionic ligand. This axial ligand effect influences the catalysis, and we observe enhanced cyclooctene epoxidation yields and turnover numbers in the presence of the unbound protonated pendant amine group. Density functional theory studies were performed to support the experiments and highlight that replacement of the pendant amine with a neutral or anionic ligand dramatically lowers the rate-determining barriers of cyclooctene epoxidation. The computational work further establishes that the change in OAT is due to electrostatic interactions of the pendant amine cation that favorably affect the barrier heights.


Asunto(s)
Compuestos de Hierro/química , Oxígeno/química , Teoría Funcional de la Densidad , Concentración de Iones de Hidrógeno , Ligandos , Estructura Molecular
3.
Inorg Chem ; 58(19): 13382-13393, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31513388

RESUMEN

Oxoiron(IV) is a common catalytic byproduct observed in the oxidation of alkenes by the combination of H2O2 and nonheme iron catalysts including complex 1, FeIIPDP* (where PDP* = bis(3,5-dimethyl-4-methoxypyridyl-2-methyl)-(R,R)-2,2'-bipyrrolidine). The oxoiron(IV) species have been proposed to arise by O-O homolysis of the peroxyiron(III) or acylperoxyiron(III) intermediates formed during the presumed FeIII-FeV catalytic cycle and have generally been regarded as off-pathway. We generated complex 1IV═O (λmax = 730 nm, ε = 350 M-1 cm-1) directly from 1 and an oxygen atom donor IBXi-Pr (isopropyl 2-iodoxybenzoate) in acetonitrile in the temperature range from -35 to +25 °C under stopped-flow conditions. Species 1IV═O is metastable (half-life of 2.0 min at +25 °C), and its decay is accelerated in the presence of organic substrates such as thioanisole, alkenes, benzene, and cyclohexane. The reaction with cyclohexane-d12 is significantly slower (KIE = 4.9 ± 0.4), suggesting that a hydrogen atom transfer to 1IV═O is the rate limiting step. With benzene-d6, no significant isotope effect is observed (KIE = 1.0 ± 0.2), but UV-vis spectra show the concomitant formation of an intense 580 nm band likely due to the Fe(III)-phenolate chromophore, suggesting an electrophilic attack of 1IV═O on the aromatic system of benzene. Treatment of 1IV═O with H2O2 resulted in rapid decay of its 730 nm visible band (k = 102.6 ± 4.6 M-1 s-1 at -20 °C), most likely occurring by a hydrogen atom transfer from H2O2. In the presence of excess H2O2, the oxoiron(IV) is transformed into peroxyiron(III), as seen from the formation of a characteristic 550 nm visible band and geff = 2.22, 2.16, and 1.96 electron paramagnetic resonance (EPR) spectroscopy signals. Reductively formed 1III-OOH was able to re-enter the catalytic cycle of alkene epoxidation by H2O2, albeit with lower yields versus those of oxidatively formed (i.e., 1 + H2O2) peroxyiron(III) owing to a loss of ca. 40% active iron. As such, the oxoiron(IV) species can be reintroduced to the catalytic cycle with extra H2O2, acting as an iron reservoir. Alternatively, peroxycarboxylic acids, which have a stronger O-H bond dissociation energy, do not reduce 1IV═O, ensuring that more oxidant is productively employed in substrate oxidation. While this reaction with H2O2 may occur for other nonheme oxoiron(IV) complexes, the only previously reported examples are 3IV═O and 4IV═O, which are reduced by hydrogen peroxide 130- and 2900-fold more slowy, respectively (as in Angew. Chemie - Int. Ed. 2012 , 51 ( 22 ), 5376 - 5380 , DOI: 10.1002/anie.201200901 ).

4.
J Am Chem Soc ; 140(1): 264-276, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29172489

RESUMEN

Reaction of [Pd(IPr)2] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and O2 leads to the surprising discovery that at low temperature the initial reaction product is a highly labile peroxide complex cis-[Pd(IPr)2(η2-O2)]. At temperatures ≳ -40 °C, cis-[Pd(IPr)2(η2-O2)] adds a second O2 to form trans-[Pd(IPr)2(η1-O2)2]. Squid magnetometry and EPR studies yield data that are consistent with a singlet diradical ground state with a thermally accessible triplet state for this unique bis-superoxide complex. In addition to reaction with O2, cis-[Pd(IPr)2(η2-O2)] reacts at low temperature with H2O in methanol/ether solution to form trans-[Pd(IPr)2(OH)(OOH)]. The crystal structure of trans-[Pd(IPr)2(OOH)(OH)] is reported. Neither reaction with O2 nor reaction with H2O occurs under comparable conditions for cis-[Pd(IMes)2(η2-O2)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene). The increased reactivity of cis-[Pd(IPr)2(η2-O2)] is attributed to the enthalpy of binding of O2 to [Pd(IPr)2] (-14.5 ± 1.0 kcal/mol) that is approximately one-half that of [Pd(IMes)2] (-27.9 ± 1.5 kcal/mol). Computational studies identify the cause as interligand repulsion forcing a wider C-Pd-C angle and tilting of the NHC plane in cis-[Pd(IPr)2(η2-O2)]. Arene-arene interactions are more favorable and serve to further stabilize cis-[Pd(IMes)2(η2-O2)]. Inclusion of dispersion effects in DFT calculations leads to improved agreement between experimental and computational enthalpies of O2 binding. A complete reaction diagram is constructed for formation of trans-[Pd(IPr)2(η1-O2)2] and leads to the conclusion that kinetic factors inhibit formation of trans-[Pd(IMes)2(η1-O2)2] at the low temperatures at which it is thermodynamically favored. Failure to detect the predicted T-shaped intermediate trans-[Pd(NHC)2(η1-O2)] for either NHC = IMes or IPr is attributed to dynamic effects. A partial potential energy diagram for initial binding of O2 is constructed. A range of low-energy pathways at different angles of approach are present and blur the distinction between pure "side-on" or "end-on" trajectories for oxygen binding.

5.
Inorg Chem ; 53(20): 11185-96, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25280113

RESUMEN

The enthalpy of oxygen atom transfer (OAT) to V[(Me3SiNCH2CH2)3N], 1, forming OV[(Me3SiNCH2CH2)3N], 1-O, and the enthalpies of sulfur atom transfer (SAT) to 1 and V(N[t-Bu]Ar)3, 2 (Ar = 3,5-C6H3Me2), forming the corresponding sulfides SV[(Me3SiNCH2CH2)3N], 1-S, and SV(N[t-Bu]Ar)3, 2-S, have been measured by solution calorimetry in toluene solution using dbabhNO (dbabhNO = 7-nitroso-2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene) and Ph3SbS as chalcogen atom transfer reagents. The V-O BDE in 1-O is 6.3 ± 3.2 kcal·mol(-1) lower than the previously reported value for 2-O and the V-S BDE in 1-S is 3.3 ± 3.1 kcal·mol(-1) lower than that in 2-S. These differences are attributed primarily to a weakening of the V-Naxial bond present in complexes of 1 upon oxidation. The rate of reaction of 1 with dbabhNO has been studied by low temperature stopped-flow kinetics. Rate constants for OAT are over 20 times greater than those reported for 2. Adamantyl isonitrile (AdNC) binds rapidly and quantitatively to both 1 and 2 forming high spin adducts of V(III). The enthalpies of ligand addition to 1 and 2 in toluene solution are -19.9 ± 0.6 and -17.1 ± 0.7 kcal·mol(-1), respectively. The more exothermic ligand addition to 1 as compared to 2 is opposite to what was observed for OAT and SAT. This is attributed to less weakening of the V-Naxial bond in ligand binding as opposed to chalcogen atom transfer and is in keeping with structural data and computations. The structures of 1, 1-O, 1-S, 1-CNAd, and 2-CNAd have been determined by X-ray crystallography and are reported.


Asunto(s)
Calcógenos/química , Complejos de Coordinación/química , Nitrilos/química , Vanadio/química , Sitios de Unión , Complejos de Coordinación/síntesis química , Cinética , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Termodinámica
6.
Inorg Chem ; 53(10): 5384-91, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24773522

RESUMEN

A peroxide dianion (O2(2-)) can be isolated within the cavity of hexacarboxamide cryptand, [(O2)⊂mBDCA-5t-H6](2-), stabilized by hydrogen bonding but otherwise free of proton or metal-ion association. This feature has allowed the electron-transfer (ET) kinetics of isolated peroxide to be examined chemically and electrochemically. The ET of [(O2)⊂mBDCA-5t-H6](2-) with a series of seven quinones, with reduction potentials spanning 1 V, has been examined by stopped-flow spectroscopy. The kinetics of the homogeneous ET reaction has been correlated to heterogeneous ET kinetics as measured electrochemically to provide a unified description of ET between the Butler-Volmer and Marcus models. The chemical and electrochemical oxidation kinetics together indicate that the oxidative ET of O2(2-) occurs by an outer-sphere mechanism that exhibits significant nonadiabatic character, suggesting that the highest occupied molecular orbital of O2(2-) within the cryptand is sterically shielded from the oxidizing species. An understanding of the ET chemistry of a free peroxide dianion will be useful in studies of metal-air batteries and the use of [(O2)⊂mBDCA-5t-H6](2-) as a chemical reagent.


Asunto(s)
Peróxidos/química , Técnicas Electroquímicas , Transporte de Electrón , Iones/química , Cinética , Oxidación-Reducción
7.
Proc Natl Acad Sci U S A ; 108(4): 1222-7, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21220298

RESUMEN

Carbon dioxide may react with free or metal-bound hydroxide to afford products containing bicarbonate or carbonate, often captured as ligands bridging two or three metal sites. We report the kinetics and probable mechanism of an extremely rapid fixation reaction mediated by a planar nickel complex [Ni(II)(NNN)(OH)](1-) containing a tridentate 2,6-pyridinedicarboxamidate pincer ligand and a terminal hydroxide ligand. The minimal generalized reaction is M-OH + CO(2) → M-OCO(2)H; with variant M, previous rate constants are ≲10(3) M(-1) s(-1) in aqueous solution. For the present bimolecular reaction, the (extrapolated) rate constant is 9.5 × 10(5) M(-1) s(-1) in N,N'-dimethylformamide at 298 K, a value within the range of k(cat)/K(M)≈10(5)-10(8) M(-1) s(-1) for carbonic anhydrase, the most efficient catalyst of CO(2) fixation reactions. The enthalpy profile of the fixation reaction was calculated by density functional theory. The initial event is the formation of a weak precursor complex between the Ni-OH group and CO(2), followed by insertion of a CO(2) oxygen atom into the Ni-OH bond to generate a four center Ni(η(2)-OCO(2)H) transition state similar to that at the zinc site in carbonic anhydrase. Thereafter, the Ni-OH bond detaches to afford the Ni(η(1)-OCO(2)H) fragment, after which the molecule passes through a second, lower energy transition state as the bicarbonate ligand rearranges to a conformation very similar to that in the crystalline product. Theoretical values of metric parameters and activation enthalpy are in good agreement with experimental values [ΔH(‡) = 3.2(5) kcal/mol].


Asunto(s)
Dióxido de Carbono/química , Modelos Químicos , Bicarbonatos/química , Dimetilformamida/química , Cinética , Estructura Molecular , Espectrofotometría , Termodinámica , Agua/química
8.
J Am Chem Soc ; 135(30): 11357-72, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23805977

RESUMEN

Thermodynamic, kinetic, and computational studies are reported for oxygen atom transfer (OAT) to the complex V(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2, 1) from compounds containing N-O bonds with a range of BDEs spanning nearly 100 kcal mol(-1): PhNO (108) > SIPr/MesCNO (75) > PyO (63) > IPr/N2O (62) > MesCNO (53) > N2O (40) > dbabhNO (10) (Mes = mesityl; SIPr = 1,3-bis(diisopropyl)phenylimidazolin-2-ylidene; Py = pyridine; IPr = 1,3-bis(diisopropyl)phenylimidazol-2-ylidene; dbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene). Stopped flow kinetic studies of the OAT reactions show a range of kinetic behavior influenced by both the mode and strength of coordination of the O donor and its ease of atom transfer. Four categories of kinetic behavior are observed depending upon the magnitudes of the rate constants involved: (I) dinuclear OAT following an overall third order rate law (N2O); (II) formation of stable oxidant-bound complexes followed by OAT in a separate step (PyO and PhNO); (III) transient formation and decay of metastable oxidant-bound intermediates on the same time scale as OAT (SIPr/MesCNO and IPr/N2O); (IV) steady-state kinetics in which no detectable intermediates are observed (dbabhNO and MesCNO). Thermochemical studies of OAT to 1 show that the V-O bond in O≡V(N[t-Bu]Ar)3 is strong (BDE = 154 ± 3 kcal mol(-1)) compared with all the N-O bonds cleaved. In contrast, measurement of the N-O bond in dbabhNO show it to be especially weak (BDE = 10 ± 3 kcal mol(-1)) and that dissociation of dbabhNO to anthracene, N2, and a (3)O atom is thermodynamically favorable at room temperature. Comparison of the OAT of adducts of N2O and MesCNO to the bulky complex 1 show a faster rate than in the case of free N2O or MesCNO despite increased steric hindrance of the adducts.

9.
Chemistry ; 19(12): 4058-68, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23362213

RESUMEN

Iron(IV)-oxo intermediates are involved in oxidations catalyzed by heme and nonheme iron enzymes, including the cytochromes P450. At the distal site of the heme in P450 Compound I (Fe(IV) -oxo bound to porphyrin radical), the oxo group is involved in several hydrogen-bonding interactions with the protein, but their role in catalysis is currently unknown. In this work, we investigate the effects of hydrogen bonding on the reactivity of high-valent metal-oxo moiety in a nonheme iron biomimetic model complex with trigonal bipyramidal symmetry that has three hydrogen-bond donors directed toward a metal(IV)-oxo group. We show these interactions lower the oxidative power of the oxidant in reactions with dehydroanthracene and cyclohexadiene dramatically as they decrease the strength of the OH bond (BDEOH ) in the resulting metal(III)-hydroxo complex. Furthermore, the distal hydrogen-bonding effects cause stereochemical repulsions with the approaching substrate and force a sideways attack rather than a more favorable attack from the top. The calculations, therefore, give important new insights into distal hydrogen bonding, and show that in biomimetic, and, by extension, enzymatic systems, the hydrogen bond may be important for proton-relay mechanisms involved in the formation of the metal-oxo intermediates, but the enzyme pays the price for this by reduced hydrogen atom abstraction ability of the intermediate. Indeed, in nonheme iron enzymes, where no proton relay takes place, there generally is no donating hydrogen bond to the iron(IV)-oxo moiety.


Asunto(s)
Complejos de Coordinación/química , Hierro/química , Manganeso/química , Oxidantes/química , Catálisis , Sistema Enzimático del Citocromo P-450/química , Hemo/química , Enlace de Hidrógeno , Oxidación-Reducción
10.
Inorg Chem ; 52(5): 2627-36, 2013 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-23432330

RESUMEN

Several [Fe(II)2(N-EtHPTB)(µ-O2X)](2+) complexes (1·O2X) have been synthesized, where N-EtHPTB is the anion of N,N,N'N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane and O2X is an oxyanion bridge. Crystal structures reveal five-coordinate (µ-alkoxo)diiron(II) cores. These diiron(II) complexes react with O2 at low temperatures in CH2Cl2 (-90 °C) to form blue-green O2 adducts that are best described as triply bridged (µ-η(1):η(1)-peroxo)diiron(III) species (2·O2X). With one exception, all 2·O2X intermediates convert irreversibly to doubly bridged, blue (µ-η(1):η(1)-peroxo)diiron(III) species (3·O2X). Where possible, 2·O2X and 3·O2X intermediates were characterized using resonance Raman spectroscopy, showing respective νO-O values of ∼850 and ∼900 cm(-1). How the steric and electronic properties of O2X affect conversion of 2·O2X to 3·O2X was examined. Stopped-flow analysis reveals that oxygenation kinetics of 1·O2X is unaffected by the nature of O2X, and for the first time, the benzoate analog of 2·O2X (2·O2CPh) is observed.


Asunto(s)
Ácidos Carboxílicos/química , Compuestos Ferrosos/química , Hierro/química , Oxígeno/química , Cristalografía por Rayos X , Compuestos Ferrosos/síntesis química , Modelos Moleculares , Conformación Molecular
11.
Inorg Chem ; 52(14): 7968-79, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23822112

RESUMEN

A versatile class of heme monoxygenases involved in many vital functions for human health are the cytochromes P450, which react via a high-valent iron(IV) oxo heme cation radical species called Compound I. One of the key reactions catalyzed by these enzymes is C═C epoxidation of substrates. We report here a systematic study into the intrinsic chemical properties of substrate and oxidant that affect reactivity patterns. To this end, we investigated the effect of styrene and para-substituted styrene epoxidation by Compound I models with either an anionic (chloride) or neutral (acetonitrile) axial ligand. We show, for the first time, that the activation enthalpy of the reaction is determined by the ionization potential of the substrate, the electron affinity of the oxidant, and the strength of the newly formed C-O bond (approximated by the bond dissociation energy, BDE(OH)). We have set up a new valence bond model that enables us to generalize substrate epoxidation reactions by iron(IV)-oxo porphyrin cation-radical oxidants and make predictions of rate constants and reactivities. We show here that electron-withdrawing substituents lead to early transition states, whereas electron-donating groups on the olefin substrate give late transition states. This affects the barrier heights in such a way that electron-withdrawing substituents correlate the barrier height with BDE(OH), while the electron affinity of the oxidant is proportional to the barrier height for substrates with electron-donating substituents.


Asunto(s)
Compuestos Epoxi/química , Hierro/química , Porfirinas/química , Estireno/química , Cationes/química , Sistema Enzimático del Citocromo P-450/química , Humanos , Ligandos , Modelos Moleculares , Oxidantes/química
12.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 11): o1711, 2013 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-24454135

RESUMEN

The title compound, C10H22N2 (2+)·2Br(-), was synthesized via reduction of 2,2'-dipyridyl with Ni-Al alloy/KOH, followed by separation of diastereoisomers (meso and rac) by recrystallization from ethanol. Although the two bridging C atoms are optically active, these two chiral centers adopt an (S,R) configuration; thus, the title compound contains an achiral meso form of 2,2'-bi-piperidine. Both of the piperidinium rings adopt chair conformations, and the two N atoms are trans to each other; an inversion center is located in the mid-point of the central C-C bond. The conformation of the organic moiety resembles that of 1,1'-bi(cyclo-hexa-ne). The organic di-ammonium cations are linked to each other through hydrogen bonding with bromide counter-ions, each of which forms two hydrogen bonds (N-H⋯Br) with two adjacent organic cations, thus linking the latter together in sheets parallel to (100).

13.
J Am Chem Soc ; 134(44): 18249-52, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23082724

RESUMEN

Treatment of V(N[(t)Bu]Ar)(3) (1) (Ar = 3,5-Me(2)C(6)H(3)) with O(2) was shown by stopped-flow kinetic studies to result in the rapid formation of (η(1)-O(2))V(N[(t)Bu]Ar)(3) (2) (ΔH(‡) = 3.3 ± 0.2 kcal/mol and ΔS(‡) = -22 ± 1 cal mol(-1) K(-1)), which subsequently isomerizes to (η(2)-O(2))V(N[(t)Bu]Ar)(3) (3) (ΔH(‡) = 10.3 ± 0.9 kcal/mol and ΔS(‡) = -6 ± 4 cal mol(-1) K(-1)). The enthalpy of binding of O(2) to form 3 is -75.0 ± 2.0 kcal/mol, as measured by solution calorimetry. The reaction of 3 and 1 to form 2 equiv of O≡V(N[(t)Bu]Ar)(3) (4) occurs by initial isomerization of 3 to 2. The results of computational studies of this rearrangement (ΔH = 4.2 kcal/mol; ΔH(‡) = 16 kcal/mol) are in accord with experimental data (ΔH = 4 ± 3 kcal/mol; ΔH(‡) = 14 ± 3 kcal/mol). With the aim of suppressing the formation of 4, the reaction of O(2) with 1 in the presence of (t)BuCN was studied. At -45 °C, the principal products of this reaction are 3 and (t)BuC(═O)N≡V(N[(t)Bu]Ar)(3) (5), in which the bound nitrile has been oxidized. Crystal structures of 3 and 5 are reported.

14.
Inorg Chem ; 51(9): 5006-21, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22534174

RESUMEN

An iron(II) complex with a pyridine-containing 14-membered macrocyclic (PyMAC) ligand L1 (L1 = 2,7,12-trimethyl-3,7,11,17-tetra-azabicyclo[11.3.1]heptadeca-1(17),13,15-triene), 1, was prepared and characterized. Complex 1 contains low-spin iron(II) in a pseudo-octahedral geometry as determined by X-ray crystallography. Magnetic susceptibility measurements (298 K, Evans method) and Mössbauer spectroscopy (90 K, δ = 0.50(2) mm/s, ΔE(Q) = 0.78(2) mm/s) confirmed that the low-spin configuration of Fe(II) is retained in liquid and frozen acetonitrile solutions. Cyclic voltammetry revealed a reversible one-electron oxidation/reduction of the iron center in 1, with E(1/2)(Fe(III)/Fe(II)) = 0.49 V vs Fc(+)/Fc, a value very similar to the half-wave potentials of related macrocyclic complexes. Complex 1 catalyzed the epoxidation of cyclooctene and other olefins with H(2)O(2). Low-temperature stopped-flow kinetic studies demonstrated the formation of an iron(IV)-oxo intermediate in the reaction of 1 with H(2)O(2) and concomitant partial ligand oxidation. A soluble iodine(V) oxidant, isopropyl 2-iodoxybenzoate, was found to be an excellent oxygen atom donor for generating Fe(IV)-oxo intermediates for additional spectroscopic (UV-vis in CH(3)CN: λ(max) = 705 nm, ε ≈ 240 M(-1) cm(-1); Mössbauer: δ = 0.03(2) mm/s, ΔE(Q) = 2.00(2) mm/s) and kinetic studies. The electrophilic character of the (L1)Fe(IV)═O intermediate was established in rapid (k(2) = 26.5 M(-1) s(-1) for oxidation of PPh(3) at 0 °C), associative (ΔH(‡) = 53 kJ/mol, ΔS(‡) = -25 J/K mol) oxidation of substituted triarylphosphines (electron-donating substituents increased the reaction rate, with a negative value of Hammet's parameter ρ = -1.05). Similar double-mixing kinetic experiments demonstrated somewhat slower (k(2) = 0.17 M(-1) s(-1) at 0 °C), clean, second-order oxidation of cyclooctene into epoxide with preformed (L1)Fe(IV)═O that could be generated from (L1)Fe(II) and H(2)O(2) or isopropyl 2-iodoxybenzoate. Independently determined rates of ferryl(IV) formation and its subsequent reaction with cyclooctene confirmed that the Fe(IV)-oxo species, (L1)Fe(IV)═O, is a kinetically competent intermediate for cyclooctene epoxidation with H(2)O(2) at room temperature. Partial ligand oxidation of (L1)Fe(IV)═O occurs over time in oxidative media, reducing the oxidizing ability of the ferryl species; the macrocyclic nature of the ligand is retained, resulting in ferryl(IV) complexes with Schiff base PyMACs. NH-groups of the PyMAC ligand assist the oxygen atom transfer from ferryl(IV) intermediates to olefin substrates.


Asunto(s)
Compuestos Aza/química , Hierro/química , Compuestos Macrocíclicos/química , Compuestos Organometálicos/química , Piridinas/química , Alquenos/química , Benzoatos/química , Catálisis , Peróxido de Hidrógeno/química , Compuestos Organometálicos/síntesis química , Oxidación-Reducción , Oxígeno/química , Fosfinas/química
15.
J Am Chem Soc ; 133(32): 12418-21, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21770365

RESUMEN

We report the isolation, characterization, and reactions of the unsaturated complex L(tBu)Co (L(tBu) = bulky ß-diketiminate ligand). The unusual slipped κN,η(6)-arene binding mode in L(tBu)Co interconverts rapidly and reversibly with the traditional κ(2)N,N' ligation mode upon binding of Lewis bases, making it a "masked" two-coordinate complex. The mechanism of this isomerization is demonstrated using kinetic studies. L(tBu)Co is a stable yet reactive synthon for low-coordinate cobalt(I) complexes and is capable of cleaving the C-F bond in fluorobenzene.

16.
J Am Chem Soc ; 133(5): 1290-3, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21204538

RESUMEN

The reactivity of a number of two-coordinate [Pd(L)(L')] (L = N-heterocyclic carbene (NHC) and L' = NHC or PR(3)) complexes with O(2) has been examined. Stopped-flow kinetic studies show that O(2) binding to [Pd(IPr)(P(p-tolyl)(3))] to form cis-[Pd(IPr)(P(p-tolyl)(3))(η(2)-O(2))] occurs in a rapid, second-order process. The enthalpy of O(2) binding to the Pd(0) center has been determined by solution calorimetry to be -26.2(1.9) kcal/mol. Extension of this work to the bis-NHC complex [Pd(IPr)(2)], however, did not lead to the formation of the expected diamagnetic complex cis-[Pd(IPr)(2)(η(2)-O(2))] but to paramagnetic trans-[(Pd(IPr)(2)(η(1)-O(2))(2)], which has been fully characterized. Computational studies addressing the energetics of O(2) binding have been performed and provide insight into reactivity changes as steric pressure is increased.

17.
Inorg Chem ; 50(20): 10070-81, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-21905646

RESUMEN

The planar complexes [Ni(II)(pyN(2)(R2))(OH)](-), containing a terminal hydroxo group, are readily prepared from N,N'-(2,6-C(6)H(3)R(2))-2,6-pyridinedicarboxamidate(2-) tridentate pincer ligands (R(4)N)(OH), and Ni(OTf)(2). These complexes react cleanly and completely with carbon dioxide in DMF solution in a process of CO(2) fixation with formation of the bicarbonate product complexes [Ni(II)(pyN(2)(R2))(HCO(3))](-) having η(1)-OCO(2)H ligation. Fixation reactions follow second-order kinetics (rate = k(2)'[Ni(II)-OH][CO(2)]) with negative activation entropies (-17 to -28 eu). Reactions were monitored by growth and decay of metal-to-ligand charge-transfer (MLCT) bands at 350-450 nm. The rate order R = Me > macro > Et > Pr(i) > Bu(i) > Ph at 298 K (macro = macrocylic pincer ligand) reflects increasing steric hindrance at the reactive site. The inherent highly reactive nature of these complexes follows from k(2)' ≈ 10(6) M(-1) s(-1) for the R = Me system that is attenuated by only 100-fold in the R = Ph complex. A reaction mechanism is proposed based on computation of the enthalpic reaction profile for the R = Pr(i) system by DFT methods. The R = Et, Pr(i), and Bu(i) systems display biphasic kinetics in which the initial fast process is followed by a slower first order process currently of uncertain origin.

18.
Inorg Chem ; 50(19): 9620-30, 2011 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-21875050

RESUMEN

The enthalpies of oxygen atom transfer (OAT) from mesityl nitrile oxide (MesCNO) to Me(3)P, Cy(3)P, Ph(3)P, and the complex (Ar[(t)Bu]N)(3)MoP (Ar = 3,5-C(6)H(3)Me(2)) have been measured by solution calorimetry yielding the following P-O bond dissociation enthalpy estimates in toluene solution (±3 kcal mol(-1)): Me(3)PO [138.5], Cy(3)PO [137.6], Ph(3)PO [132.2], (Ar[(t)Bu]N)(3)MoPO [108.9]. The data for (Ar[(t)Bu]N)(3)MoPO yield an estimate of 60.2 kcal mol(-1) for dissociation of PO from (Ar[(t)Bu]N)(3)MoPO. The mechanism of OAT from MesCNO to R(3)P and (Ar[(t)Bu]N)(3)MoP has been investigated by UV-vis and FTIR kinetic studies as well as computationally. Reactivity of R(3)P and (Ar[(t)Bu]N)(3)MoP with MesCNO is proposed to occur by nucleophilic attack by the lone pair of electrons on the phosphine or phosphide to the electrophilic C atom of MesCNO forming an adduct rather than direct attack at the terminal O. This mechanism is supported by computational studies. In addition, reaction of the N-heterocyclic carbene SIPr (SIPr = 1,3-bis(diisopropyl)phenylimidazolin-2-ylidene) with MesCNO results in formation of a stable adduct in which the lone pair of the carbene attacks the C atom of MesCNO. The crystal structure of the blue SIPr·MesCNO adduct is reported, and resembles one of the computed structures for attack of the lone pair of electrons of Me(3)P on the C atom of MesCNO. Furthermore, this adduct in which the electrophilic C atom of MesCNO is blocked by coordination to the NHC does not undergo OAT with R(3)P. However, it does undergo rapid OAT with coordinatively unsaturated metal complexes such as (Ar[(t)Bu]N)(3)V since these proceed by attack of the unblocked terminal O site of the SIPr·MesCNO adduct rather than at the blocked C site. OAT from MesCNO to pyridine, tetrahydrothiophene, and (Ar[(t)Bu]N)(3)MoN was found not to proceed in spite of thermochemical favorability.


Asunto(s)
Nitrilos/química , Óxidos/química , Oxígeno/química , Fosfinas/química , Calorimetría , Cinética , Termodinámica
19.
Inorg Chem ; 50(3): 1047-57, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21222442

RESUMEN

The mononuclear nickel(II) enolate complex [(6-Ph(2)TPA)Ni(PhC(O)C(OH)C(O)Ph]ClO(4) (I) was the first reactive model complex for the enzyme/substrate (ES) adduct in nickel(II)-containing acireductone dioxygenases (ARDs) to be reported. In this contribution, the mechanism of its O(2)-dependent aliphatic carbon-carbon bond cleavage reactivity was further investigated. Stopped-flow kinetic studies revealed that the reaction of I with O(2) is second-order overall and is ∼80 times slower at 25 °C than the reaction involving the enolate salt [Me(4)N][PhC(O)C(OH)C(O)Ph]. Computational studies of the reaction of the anion [PhC(O)C(OH)C(O)Ph](-) with O(2) support a hydroperoxide mechanism wherein the first step is a redox process that results in the formation of 1,3-diphenylpropanetrione and HOO(-). Independent experiments indicate that the reaction between 1,3-diphenylpropanetrione and HOO(-) results in oxidative aliphatic carbon-carbon bond cleavage and the formation of benzoic acid, benzoate, and CO:CO(2) (∼12:1). Experiments in the presence of a nickel(II) complex gave a similar product distribution, albeit benzil [PhC(O)C(O)Ph] is also formed, and the CO:CO(2) ratio is ∼1.5:1. The results for the nickel(II)-containing reaction match those found for the reaction of I with O(2) and provide support for a trione/HOO(-) pathway for aliphatic carbon-carbon bond cleavage. Overall, I is a reasonable structural model for the ES adduct formed in the active site of Ni(II)ARD. However, the presence of phenyl appendages at both C(1) and C(3) in the [PhC(O)C(OH)C(O)Ph](-) anion results in a reaction pathway for O(2)-dependent aliphatic carbon-carbon bond cleavage (via a trione intermediate) that differs from that accessible to C(1)-H acireductone species. This study, as the first detailed investigation of the O(2) reactivity of a nickel(II) enolate complex of relevance to Ni(II)ARD, provides insight toward understanding the chemical factors involved in the O(2) reactivity of metal acireductone species.


Asunto(s)
Carbono/química , Níquel/química , Oxígeno/química , Aniones/química , Dioxigenasas/química , Peróxido de Hidrógeno/química , Cinética , Estructura Molecular , Especificidad por Sustrato
20.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 12): m1643-4, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22199474

RESUMEN

The title compound, [Mo(2)(C(11)H(16)N)(4)(C(10)H(11)N)(2)], is a dinuclear molybdenum complex with a formal metal-metal bond [Mo⋯Mo separation = 2.5946 (8) Å], four anilide-type ligands and two bridging mesityl nitrile groups. There are two inversion symmetric mol-ecules in the unit cell (an inversion center is localized at the mid-point of the Mo-Mo bond), each with approximate non-crystallographic C(2h) symmetry. The mol-ecules contain disordered isopropyl and 3,5-C(6)H(3)Me(2) groups on different anilido ligands; the major component having an occupancy of 0.683 (7). The complex was obtained in low yield as the product from the reaction between the bridging pyrazine adduct of molybdenum tris--anilide ([µ(2)-(C(4)H(4)N(2)){Mo(C(11)H(16)N)(3)}(2)]) and mesityl nitrile with a loss of one anilido ligand.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA