Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 143(8): 673-684, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-37883795

RESUMEN

ABSTRACT: CD19-directed chimeric antigen receptor T cells (CAR-T) achieve high response rates in patients with relapsed/refractory mantle cell lymphoma (MCL). However, their use is associated with significant toxicity, relapse concern, and unclear broad tractability. Preclinical and clinical data support a beneficial synergistic effect of ibrutinib on apheresis product fitness, CAR-T expansion, and toxicity. We evaluated the combination of time-limited ibrutinib and CTL019 CAR-T in 20 patients with MCL in the phase 2 TARMAC study. Ibrutinib commenced before leukapheresis and continued through CAR-T manufacture for a minimum of 6 months after CAR-T administration. The median prior lines of therapy was 2; 50% of patients were previously exposed to a Bruton tyrosine kinase inhibitor (BTKi). The primary end point was 4-month postinfusion complete response (CR) rate, and secondary end points included safety and subgroup analysis based on TP53 aberrancy. The primary end point was met; 80% of patients demonstrated CR, with 70% and 40% demonstrating measurable residual disease negativity by flow cytometry and molecular methods, respectively. At 13-month median follow-up, the estimated 12-month progression-free survival was 75% and overall survival 100%. Fifteen patients (75%) developed cytokine release syndrome; 12 (55%) with grade 1 to 2 and 3 (20%) with grade 3. Reversible grade 1 to 2 neurotoxicity was observed in 2 patients (10%). Efficacy was preserved irrespective of prior BTKi exposure or TP53 mutation. Deep responses correlated with robust CAR-T expansion and a less exhausted baseline T-cell phenotype. Overall, the safety and efficacy of the combination of BTKi and T-cell redirecting immunotherapy appears promising and merits further exploration. This trial was registered at www.ClinicalTrials.gov as #NCT04234061.


Asunto(s)
Adenina/análogos & derivados , Linfoma de Células del Manto , Piperidinas , Receptores Quiméricos de Antígenos , Adulto , Humanos , Linfoma de Células del Manto/tratamiento farmacológico , Receptores Quiméricos de Antígenos/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Linfocitos T , Inmunoterapia Adoptiva/métodos , Antígenos CD19
2.
Blood ; 139(24): 3519-3531, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35192684

RESUMEN

Transcriptome sequencing has identified multiple subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL) of prognostic significance, but a minority of cases lack a known genetic driver. Here, we used integrated whole-genome (WGS) and -transcriptome sequencing (RNA-seq), enhancer mapping, and chromatin topology analysis to identify previously unrecognized genomic drivers in B-ALL. Newly diagnosed (n = 3221) and relapsed (n = 177) B-ALL cases with tumor RNA-seq were studied. WGS was performed to detect mutations, structural variants, and copy number alterations. Integrated analysis of histone 3 lysine 27 acetylation and chromatin looping was performed using HiChIP. We identified a subset of 17 newly diagnosed and 5 relapsed B-ALL cases with a distinct gene expression profile and 2 universal and unique genomic alterations resulting from aberrant recombination-activating gene activation: a focal deletion downstream of PAN3 at 13q12.2 resulting in CDX2 deregulation by the PAN3 enhancer and a focal deletion of exons 18-21 of UBTF at 17q21.31 resulting in a chimeric fusion, UBTF::ATXN7L3. A subset of cases also had rearrangement and increased expression of the PAX5 gene, which is otherwise uncommon in B-ALL. Patients were more commonly female and young adult with median age 35 (range,12-70 years). The immunophenotype was characterized by CD10 negativity and immunoglobulin M positivity. Among 16 patients with known clinical response, 9 (56.3%) had high-risk features including relapse (n = 4) or minimal residual disease >1% at the end of remission induction (n = 5). CDX2-deregulated, UBTF::ATXN7L3 rearranged (CDX2/UBTF) B-ALL is a high-risk subtype of leukemia in young adults for which novel therapeutic approaches are required.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Adulto , Anciano , Factor de Transcripción CDX2/genética , Niño , Cromatina , Femenino , Genómica/métodos , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Complejo de Iniciación de Transcripción Pol1 , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico , Factores de Transcripción/genética , Transcriptoma , Adulto Joven
3.
Haematologica ; 106(1): 64-73, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32054657

RESUMEN

Bone marrow failure (BMF) related to hypoplasia of hematopoietic elements in the bone marrow is a heterogeneous clinical entity with a broad differential diagnosis including both inherited and acquired causes. Accurate diagnostic categorization is critical to optimal patient care and detection of genomic variants in these patients may provide this important diagnostic and prognostic information. We performed real-time, accredited (ISO15189) comprehensive genomic characterization including targeted sequencing and whole exome sequencing in 115 patients with BMF syndrome (median age 24 years, range 3 months - 81 years). In patients with clinical diagnoses of inherited BMF syndromes, acquired BMF syndromes or clinically unclassifiable BMF we detected variants in 52% (12/23), 53% (25/47) and 56% (25/45) respectively. Genomic characterization resulted in a change of diagnosis in 30/115 (26%) including the identification of germline causes for 3/47 and 16/45 cases with pre-test diagnoses of acquired and clinically unclassifiable BMF respectively. The observed clinical impact of accurate diagnostic categorization included choice to perform allogeneic stem cell transplantation, disease-specific targeted treatments, identification of at-risk family members and influence of sibling allogeneic stem cell donor choice. Multiple novel pathogenic variants and copy number changes were identified in our cohort including in TERT, FANCA, RPS7 and SAMD9. Whole exome sequence analysis facilitated the identification of variants in two genes not typically associated with a primary clinical manifestation of BMF but also demonstrated reduced sensitivity for detecting low level acquired variants. In conclusion, genomic characterization can improve diagnostic categorization of patients presenting with hypoplastic BMF syndromes and should be routinely performed in this group of patients.


Asunto(s)
Trastornos de Fallo de la Médula Ósea , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Trastornos de Fallo de la Médula Ósea/diagnóstico , Trastornos de Fallo de la Médula Ósea/genética , Niño , Preescolar , Genómica , Trasplante de Células Madre Hematopoyéticas , Humanos , Lactante , Persona de Mediana Edad , Adulto Joven
5.
Gynecol Oncol ; 156(3): 552-560, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31902686

RESUMEN

OBJECTIVE: Mucinous ovarian carcinoma (MOC) is an uncommon ovarian cancer histotype that responds poorly to conventional chemotherapy regimens. Although long overall survival outcomes can occur with early detection and optimal surgical resection, recurrent and advanced disease are associated with extremely poor survival. There are no current guidelines specifically for the systemic management of recurrent MOC. We analyzed data from a large cohort of women with MOC to evaluate the potential for clinical utility from a range of systemic agents. METHODS: We analyzed gene copy number (n = 191) and DNA sequencing data (n = 184) from primary MOC to evaluate signatures of mismatch repair deficiency and homologous recombination deficiency, and other genetic events. Immunohistochemistry data were collated for ER, CK7, CK20, CDX2, HER2, PAX8 and p16 (n = 117-166). RESULTS: Molecular aberrations noted in MOC that suggest a match with current targeted therapies include amplification of ERBB2 (26.7%) and BRAF mutation (9%). Observed genetic events that suggest potential efficacy for agents currently in clinical trials include: KRAS/NRAS mutations (66%), TP53 missense mutation (49%), RNF43 mutation (11%), ARID1A mutation (10%), and PIK3CA/PTEN mutation (9%). Therapies exploiting homologous recombination deficiency (HRD) may not be effective in MOC, as only 1/191 had a high HRD score. Mismatch repair deficiency was similarly rare (1/184). CONCLUSIONS: Although genetically diverse, MOC has several potential therapeutic targets. Importantly, the lack of response to platinum-based therapy observed clinically corresponds to the lack of a genomic signature associated with HRD, and MOC are thus also unlikely to respond to PARP inhibition.


Asunto(s)
Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/terapia , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/patología , Anciano , Estudios de Cohortes , Reparación de la Incompatibilidad de ADN , Femenino , Recombinación Homóloga , Humanos , Inmunohistoquímica , Mutación , Estadificación de Neoplasias , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Receptor ErbB-2/genética , Receptor ErbB-3/genética
8.
Int J Mol Sci ; 19(6)2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899297

RESUMEN

Primary cutaneous diffuse large B-cell lymphoma, leg type (PCDLBCL-LT) is one of the well-recognized extranodal lymphomas commonly addicted to the B-cell receptor-MYD88 superpathway. We aimed to describe the genomic changes in a patient who progressed through treatment with ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor. An 80-year-old woman presented with multiply relapsed PCDLBCL-LT after multiple lines of chemoimmunotherapy and radiotherapy. Pre-treatment testing of the localized cutaneous tumor lesion on a lymphoid amplicon panel demonstrated an MYD88 p.L265P mutation. Ibrutinib therapy was subsequently commenced, resulting in complete resolution of the skin disease. Despite an ongoing skin response, the patient developed progressive nodal disease at two months. Genomic analysis of the cutaneous tumor sample at baseline was compared to that of the inguinal lymph node upon progression, and revealed the acquisition of multiple genomic changes. These included several aberrations expected to bypass BTK inhibition, including two CARD11-activating mutations, and a deleterious mutation in the nuclear factor kappa B (NF-κB) negative regulator, NFKBIE. In addition, an IgH-IRF8 translocation was detected (which brings the IRF8 transcription factor under control of the immunoglobulin heavy chain locus), representing a third plausible mechanism contributing to ibrutinib resistance. Several copy-number changes occurred in both samples, including an amplification of 18q, which encodes the anti-apoptotic protein BCL2. We describe the first case of novel genomic changes of PCDLBCL-LT that occurred while on ibrutinib, providing important mechanistic insights into both pathogenesis and drug resistance.


Asunto(s)
Antineoplásicos/uso terapéutico , Linfoma de Células B Grandes Difuso/genética , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Neoplasias Cutáneas/genética , Adenina/análogos & derivados , Anciano de 80 o más Años , Antineoplásicos/administración & dosificación , Proteínas Adaptadoras de Señalización CARD/genética , Progresión de la Enfermedad , Femenino , Inestabilidad Genómica , Guanilato Ciclasa/genética , Humanos , Proteínas I-kappa B/genética , Factores Reguladores del Interferón/genética , Metástasis Linfática , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Mutación , Piperidinas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología
9.
BMC Bioinformatics ; 18(1): 555, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29246107

RESUMEN

BACKGROUND: High throughput sequencing requires bioinformatics pipelines to process large volumes of data into meaningful variants that can be translated into a clinical report. These pipelines often suffer from a number of shortcomings: they lack robustness and have many components written in multiple languages, each with a variety of resource requirements. Pipeline components must be linked together with a workflow system to achieve the processing of FASTQ files through to a VCF file of variants. Crafting these pipelines requires considerable bioinformatics and IT skills beyond the reach of many clinical laboratories. RESULTS: Here we present Canary, a single program that can be run on a laptop, which takes FASTQ files from amplicon assays through to an annotated VCF file ready for clinical analysis. Canary can be installed and run with a single command using Docker containerization or run as a single JAR file on a wide range of platforms. Although it is a single utility, Canary performs all the functions present in more complex and unwieldy pipelines. All variants identified by Canary are 3' shifted and represented in their most parsimonious form to provide a consistent nomenclature, irrespective of sequencing variation. Further, proximate in-phase variants are represented as a single HGVS 'delins' variant. This allows for correct nomenclature and consequences to be ascribed to complex multi-nucleotide polymorphisms (MNPs), which are otherwise difficult to represent and interpret. Variants can also be annotated with hundreds of attributes sourced from MyVariant.info to give up to date details on pathogenicity, population statistics and in-silico predictors. CONCLUSIONS: Canary has been used at the Peter MacCallum Cancer Centre in Melbourne for the last 2 years for the processing of clinical sequencing data. By encapsulating clinical features in a single, easily installed executable, Canary makes sequencing more accessible to all pathology laboratories. Canary is available for download as source or a Docker image at https://github.com/PapenfussLab/Canary under a GPL-3.0 License.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Bases de Datos Genéticas , Variación Genética , Humanos
13.
Am J Pathol ; 184(6): 1871-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24726640

RESUMEN

Intraepithelial carcinomas of the fallopian tube are putative precursors to high-grade serous carcinomas of the ovary and peritoneum. Molecular characterization of these early precursors is limited but could be the key to identifying tumor biomarkers for early detection. This study presents a genome-wide copy number analysis of occult fallopian tube carcinomas identified through risk-reducing prophylactic oophorectomy from three women with germline BRCA1 mutations, demonstrating that extensive genomic aberrations are already established at this early stage. We found no indication of a difference in the level of genomic aberration observed in fallopian tube carcinomas compared with high-grade serous ovarian carcinomas. These findings suggest that spread to the peritoneal cavity may require no or very little further tumor evolution, which raises the question of what is the real window of opportunity to detect high-grade serous peritoneal carcinoma arising from the fallopian tube before it spreads. Nonetheless, the similarity of the genomic aberrations to those observed in high-grade serous ovarian carcinomas suggests that genetic biomarkers identified in late-stage disease may be relevant for early detection.


Asunto(s)
Proteína BRCA1/genética , Aberraciones Cromosómicas , Neoplasias de las Trompas Uterinas/genética , Mutación , Neoplasias de las Trompas Uterinas/patología , Femenino , Humanos , Persona de Mediana Edad
15.
PLoS Genet ; 8(9): e1002894, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028338

RESUMEN

Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.


Asunto(s)
Neoplasias de la Mama/genética , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , RecQ Helicasas/genética , Eliminación de Secuencia/genética , Alelos , Exoma/genética , Exones , Proteína del Grupo de Complementación C de la Anemia de Fanconi/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Genoma Humano , Humanos , Linaje , Polimorfismo Genético , RecQ Helicasas/metabolismo , Análisis de Secuencia de ADN
16.
BMC Genomics ; 15: 732, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25167919

RESUMEN

BACKGROUND: Using whole exome sequencing to predict aberrations in tumours is a cost effective alternative to whole genome sequencing, however is predominantly used for variant detection and infrequently utilised for detection of somatic copy number variation. RESULTS: We propose a new method to infer copy number and genotypes using whole exome data from paired tumour/normal samples. Our algorithm uses two Hidden Markov Models to predict copy number and genotypes and computationally resolves polyploidy/aneuploidy, normal cell contamination and signal baseline shift. Our method makes explicit detection on chromosome arm level events, which are commonly found in tumour samples. The methods are combined into a package named ADTEx (Aberration Detection in Tumour Exome). We applied our algorithm to a cohort of 17 in-house generated and 18 TCGA paired ovarian cancer/normal exomes and evaluated the performance by comparing against the copy number variations and genotypes predicted using Affymetrix SNP 6.0 data of the same samples. Further, we carried out a comparison study to show that ADTEx outperformed its competitors in terms of precision and F-measure. CONCLUSIONS: Our proposed method, ADTEx, uses both depth of coverage ratios and B allele frequencies calculated from whole exome sequencing data, to predict copy number variations along with their genotypes. ADTEx is implemented as a user friendly software package using Python and R statistical language. Source code and sample data are freely available under GNU license (GPLv3) at http://adtex.sourceforge.net/.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exoma , Genotipo , Neoplasias/genética , Algoritmos , Aberraciones Cromosómicas , Biología Computacional/métodos , Femenino , Genómica/métodos , Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pérdida de Heterocigocidad , Neoplasias Ováricas/genética , Polimorfismo de Nucleótido Simple , Poliploidía , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
J Pathol ; 229(3): 469-76, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23096461

RESUMEN

Mucinous carcinomas represent a distinct morphological subtype which can arise from several organ sites, including the ovary, and their genetic characteristics are largely under-described. Exome sequencing of 12 primary mucinous ovarian tumours identified RNF43 as the most frequently somatically mutated novel gene, secondary to KRAS and mutated at a frequency equal to that of TP53 and BRAF. Further screening of RNF43 in a larger cohort of ovarian tumours identified additional mutations, with a total frequency of 2/22 (9%) in mucinous ovarian borderline tumours and 6/29 (21%) in mucinous ovarian carcinomas. Seven mutations were predicted to truncate the protein and one missense mutation was predicted to be deleterious by in silico analysis. Six tumours had allelic imbalance at the RNF43 locus, with loss of the wild-type allele. The mutation spectrum strongly suggests that RNF43 is an important tumour suppressor gene in mucinous ovarian tumours, similar to its reported role in mucinous pancreatic precancerous cysts.


Asunto(s)
Adenocarcinoma Mucinoso/genética , Cistoadenoma Mucinoso/genética , Proteínas de Unión al ADN/genética , Genes Supresores de Tumor/fisiología , Mutación , Proteínas Oncogénicas/genética , Neoplasias Ováricas/genética , Adenocarcinoma Mucinoso/patología , Simulación por Computador , Cistoadenoma Mucinoso/patología , Análisis Mutacional de ADN , ADN de Neoplasias/análisis , Proteínas de Unión al ADN/metabolismo , Exoma/genética , Femenino , Humanos , Modelos Moleculares , Proteínas Oncogénicas/metabolismo , Neoplasias Ováricas/patología , Análisis de Secuencia de ADN , Ubiquitina-Proteína Ligasas
18.
J Mol Diagn ; 26(8): 673-684, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39059881

RESUMEN

Whole genome and whole transcriptome sequencing (WGTS) can accurately distinguish B-cell acute lymphoblastic leukemia (B-ALL) genomic subtypes. However, whether this is economically viable remains unclear. This study compared the direct costs and molecular subtype classification yield using different testing strategies for WGTS in adolescent and young adult/adult patients with B-ALL. These approaches were: (1) combined BCR::ABL1 by fluorescence in situ hybridization (FISH) + WGTS for all patients; and (2) sequential BCR::ABL1 FISH + WGTS contingent on initial BCR::ABL1 FISH test outcome. The cost of routine diagnostic testing was estimated using Medicare or hospital fees, and the additional cost of WGTS was evaluated from the health care provider perspective using time-driven activity-based costing with resource identification elicited from experts. Molecular subtype classification yield data were derived from literature sources. Parameter uncertainty was assessed through deterministic sensitivity analysis; additional scenario analyses were performed. The total per patient cost of WGTS was $4319 (all costs reported in US dollars); consumables accounted for 74% of the overall cost, primarily driven by sequencing-related consumables. The incremental cost per additional patient categorized into molecular subtype was $8498 for combined BCR::ABL1 FISH + WGTS for all patients and $5656 for initial BCR::ABL1 FISH + WGTS for select patients compared with routine diagnostic testing. A reduction in the consumable costs of WGTS or an increase in the yield of molecular subtype classification is favorable.


Asunto(s)
Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/economía , Secuenciación Completa del Genoma/métodos , Adolescente , Adulto , Hibridación Fluorescente in Situ/economía , Hibridación Fluorescente in Situ/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/economía , Proteínas de Fusión bcr-abl/genética , Transcriptoma , Adulto Joven , Técnicas de Diagnóstico Molecular/economía , Técnicas de Diagnóstico Molecular/métodos , Masculino , Pruebas Diagnósticas de Rutina/economía , Pruebas Diagnósticas de Rutina/métodos , Femenino , Análisis Costo-Beneficio
20.
Bioinformatics ; 28(10): 1307-13, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22474122

RESUMEN

MOTIVATION: In light of the increasing adoption of targeted resequencing (TR) as a cost-effective strategy to identify disease-causing variants, a robust method for copy number variation (CNV) analysis is needed to maximize the value of this promising technology. RESULTS: We present a method for CNV detection for TR data, including whole-exome capture data. Our method calls copy number gains and losses for each target region based on normalized depth of coverage. Our key strategies include the use of base-level log-ratios to remove GC-content bias, correction for an imbalanced library size effect on log-ratios, and the estimation of log-ratio variations via binning and interpolation. Our methods are made available via CONTRA (COpy Number Targeted Resequencing Analysis), a software package that takes standard alignment formats (BAM/SAM) and outputs in variant call format (VCF4.0), for easy integration with other next-generation sequencing analysis packages. We assessed our methods using samples from seven different target enrichment assays, and evaluated our results using simulated data and real germline data with known CNV genotypes.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exoma , Análisis de Secuencia de ADN , Animales , Simulación por Computador , Proyecto Mapa de Haplotipos , Humanos , Ratones , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA