Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Molecules ; 29(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274884

RESUMEN

Prion diseases, known as a group of fatal neurodegenerative disorders caused by prions, remain incurable despite extensive research efforts. In a recent study, crude extract from Curcuma phaeocaulis Valeton (Cp) showed promising anti-prion efficacy in in vitro and in vivo models, prompting further investigation into their active compounds. We endeavored to identify the chemical constituents of the Cp extract and discover potential anti-prion agents. With the use of centrifugal partition chromatography (CPC), major constituents were isolated from the n-hexane (HX) fraction of the extract in a single step. Spectroscopic analysis confirmed the presence of curcumenone, curcumenol, and furanodienone. Subsequent efficacy testing in a cell culture model of prion disease identified curcumenol and furanodienone as active compounds. This study underscores the potential of natural products in the search for effective treatments against prion diseases.


Asunto(s)
Curcuma , Extractos Vegetales , Curcuma/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Priones/antagonistas & inhibidores , Enfermedades por Prión/tratamiento farmacológico , Ratones , Humanos , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación
2.
Mol Biol Rep ; 50(5): 4029-4038, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36848005

RESUMEN

INTRODUCTION: Osteosarcoma (OS) is the most common form of bone malignancy. Although contemporary chemotherapy and surgery have improved the prognosis of those with OS, developing new OS therapies has proven difficult for some time. The activation of the matrix metalloproteinase (MMP) and mitogen-activated protein kinase (MAPK) signaling pathways can induce metastasis, which is an obstacle to OS treatment. Ursonic acid (UNA) is a phytochemical with the potential to cure a variety of human ailments, including cancer. METHODS AND RESULTS: In this study, we investigated the anti-tumor properties of UNA in MG63 cells. We conducted colony formation assay, wound healing assay, and Boyden chamber assays to investigate the anti-OS effects of UNA. UNA was found to significantly inhibit the proliferative, migratory, and invasive abilities of MG63 cells. This bioactivity of UNA was mediated by the inhibition of extracellular signal-regulated kinase (ERK) and p38 and reduction of MMP-2 transcriptional expression as observed in western blot analysis, gelatin zymography and RT-PCR. Anti-OS activities of UNA were also observed in Saos2 and U2OS cells, indicating that its anti-cancer properties are not specific to cell types. CONCLUSION: Our findings suggest that UNA has the potential for use in anti-metastatic drugs in the treatment of OS.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Línea Celular Tumoral , Movimiento Celular , Sistema de Señalización de MAP Quinasas , Metaloproteinasas de la Matriz/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Neoplasias Óseas/metabolismo , Invasividad Neoplásica
3.
J Enzyme Inhib Med Chem ; 38(1): 2191164, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36950944

RESUMEN

Prions are infectious protein particles known to cause prion diseases. The biochemical entity of the pathogen is the misfolded prion protein (PrPSc) that forms insoluble amyloids to impair brain function. PrPSc interacts with the non-pathogenic, cellular prion protein (PrPC) and facilitates conversion into a nascent misfolded isoform. Several small molecules have been reported to inhibit the aggregation of PrPSc but no pharmacological intervention was well established thus far. We, here, report that acylthiosemicarbazides inhibit the prion aggregation. Compounds 7x and 7y showed almost perfect inhibition (EC50 = 5 µM) in prion aggregation formation assay. The activity was further confirmed by atomic force microscopy, semi-denaturing detergent agarose gel electrophoresis and real-time quaking induced conversion assay (EC50 = 0.9 and 2.8 µM, respectively). These compounds also disaggregated pre-existing aggregates in vitro and one of them decreased the level of PrPSc in cultured cells with permanent prion infection, suggesting their potential as a treatment platform. In conclusion, hydroxy-2-naphthoylthiosemicarbazides can be an excellent scaffold for the discovery of anti-prion therapeutics.


Asunto(s)
Enfermedades por Prión , Priones , Humanos , Priones/metabolismo , Proteínas Priónicas/metabolismo , Encéfalo , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Células Cultivadas
4.
Ecotoxicol Environ Saf ; 246: 114159, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36215882

RESUMEN

Di-n-butyl phthalate (DBP), a well-known endocrine disruptor, causes male reproductive dysfunction. To understand the underlying mechanisms, we performed histological, endocrinological, and biochemical analyses and assessed the expression of genes involved in spermatogenesis and sperm function according to OECD test guideline 407. Following 28 days of administration of the lowest observed adverse effect level dose of DBP to mice, no significant changes in body weight, testis and epididymis weights and histology, serum testosterone level, or testicular daily sperm production were found. Nonetheless, the motility of the epididymal sperm of the DBP group was significantly decreased together with an increase in the incidence of bent tails and abnormal heads. In the testes of the DBP group, lipid peroxidation (LPO) level was significantly increased and testicular Bcl-2 mRNA level was significantly decreased together with an increase in the Bax/Bcl-2 mRNA ratio. In the testes of the DBP group, levels of Prnd mRNA and protein and Pou4f1 mRNA, an activator of the Prnd promotor, were significantly decreased. Of note, prion-like protein doppel (PRND) was significantly decreased together with decreased PRND immunoreactivity in the head, midpiece, and tail of sperm. In the testes of the DBP group, levels of Sox9, Sgp1, and Sgp2 mRNA, which are functional Sertoli cell markers, were significantly decreased. Level of Amh mRNA, a Sertoli cell immaturity marker, was significantly increased together with that of Inha mRNA, suggesting deregulation of the brain-gonadal axis. Together, our findings suggest that DBP at present dosage may potentiate LPO generation and Sertoli cell immaturity via downregulation of Sox9 and disruption of the Pou4f1-Prnd gene network in post-meiotic germ cells without visible changes in spermatogenesis or testosterone level. This may result in structural and functional abnormalities in spermatozoa. Additionally, our findings suggest that assessment of the male reproductive toxicity of phthalate ester plasticizers based on conventional OECD test guidelines should be reconsidered.


Asunto(s)
Plastificantes , Priones , Masculino , Ratones , Animales , Plastificantes/toxicidad , Plastificantes/metabolismo , Priones/metabolismo , Priones/farmacología , Testosterona , Semen , Dibutil Ftalato/toxicidad , Dibutil Ftalato/metabolismo , Testículo , Espermatozoides , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613636

RESUMEN

Prion diseases are neurodegenerative disorders in humans and animals for which no therapies are currently available. Here, we report that Curcuma phaeocaulis Valeton (Zingiberaceae) (CpV) extract was partly effective in decreasing prion aggregation and propagation in both in vitro and in vivo models. CpV extract inhibited self-aggregation of recombinant prion protein (PrP) in a test tube assay and decreased the accumulation of scrapie PrP (PrPSc) in ScN2a cells, a cultured neuroblastoma cell line with chronic prion infection, in a concentration-dependent manner. CpV extract also modified the course of the disease in mice inoculated with mouse-adapted scrapie prions, completely preventing the onset of prion disease in three of eight mice. Biochemical and neuropathological analyses revealed a statistically significant reduction in PrPSc accumulation, spongiosis, astrogliosis, and microglia activation in the brains of mice that avoided disease onset. Furthermore, PrPSc accumulation in the spleen of mice was also reduced. CpV extract precluded prion infection in cultured cells as demonstrated by the modified standard scrapie cell assay. This study suggests that CpV extract could contribute to investigating the modulation of prion propagation.


Asunto(s)
Enfermedades por Prión , Priones , Scrapie , Zingiberaceae , Animales , Ratones , Curcuma/metabolismo , Modelos Animales , Extractos Vegetales/farmacología , Enfermedades por Prión/tratamiento farmacológico , Proteínas Priónicas , Priones/metabolismo , Scrapie/metabolismo , Ovinos
6.
Biol Reprod ; 103(4): 828-839, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32577722

RESUMEN

Although a few aquaporins (AQPs) expressed in granulosa cells have been postulated to mediate fluid passage into the antrum, the specific expression of AQPs in different follicle cell types and stages and their roles have not been evaluated extensively. The spatiotemporal expression of aquaporin (Aqp) 7, 8, and 9 and the functional roles of Aqp9 in antral growth and ovulation were examined using a superovulation model and 3-dimensional follicle culture. Aqp9 was expressed at a high level in the rapid growth phase (24-48 h post equine chorionic gonadotropin (eCG) for superovulation induction) compared to Aqp7 (after human chorionic gonadotropin (hCG)) and Aqp8 (8-24 h post eCG and 24 h post hCG). A dramatic increase in the expression and localization of Aqp9 mRNA in theca cells was observed, as evaluated using quantitative reverse transcription-polymerase (RT-PCR) coupled with laser capture microdissection and immunohistochemistry. AQP9 was located primarily on the theca cells of the tertiary and preovulatory follicles but not on the ovulated follicles. In phloretin-treated mice, the diameter of the preovulatory follicles and the number of ovulated oocytes decreased. Consistent with these findings, knocking down Aqp9 expression with an Aqp9 siRNA inhibited follicle growth (0.28:1 = siRNA:control) and decreased the number of ovulated follicles (0.36:1 = siRNA:control) during in vitro growth and ovulation induction. Based on these results, the expression of AQPs is under the control of the physiological status, and AQP9 expression in theca during folliculogenesis is required for antral growth and ovulation in a tissue-specific and stage-dependent manner.


Asunto(s)
Acuaporinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Folículo Ovárico/metabolismo , Animales , Acuaporinas/genética , Gonadotropina Coriónica/farmacología , Femenino , Regulación de la Expresión Génica/fisiología , Ratones , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superovulación , Técnicas de Cultivo de Tejidos
7.
Biochem Biophys Res Commun ; 512(2): 314-318, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30890336

RESUMEN

Plasmin is a potent serin protease involved in a variety of biological functions, such as fibrinolysis and tissue remodeling. On performing an in vitro control assay to measure the activity of endogenous plasmin in cell lysates, a stimulatory effect of non-ionic detergent NP-40 on plasmin activity was discovered. Another non-ionic detergent, TX-100, also enhanced plasmin activity, while ionic detergents sodium deoxycholate and sodiem dodecyl sulfate abolished plasmin enzyme activity. Kinetic analysis of plasmin activity in the presence of NP-40 and TX-100 demonstrated an increase in Vmax; however, there was no change in Km values, suggesting that these detergents stimulate plasmin activity in a non-competitive manner. Fibrin plate assay indicates that NP-40 and TX-100 functionally stimulate plasmin activity by showing a dose-dependent increase in fibrinolysis.


Asunto(s)
Detergentes/farmacología , Fibrinolisina/efectos de los fármacos , Fibrinolisina/metabolismo , Ácido Desoxicólico/farmacología , Fibrinólisis/efectos de los fármacos , Humanos , Técnicas In Vitro , Cinética , Octoxinol/farmacología , Dodecil Sulfato de Sodio/farmacología
8.
Int J Mol Sci ; 20(23)2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766475

RESUMEN

Self-assembling peptides are biomedical materials with unique structures that are formed in response to various environmental conditions. Governed by their physicochemical characteristics, the peptides can form a variety of structures with greater reactivity than conventional non-biological materials. The structural divergence of self-assembling peptides allows for various functional possibilities; when assembled, they can be used as scaffolds for cell and tissue regeneration, and vehicles for drug delivery, conferring controlled release, stability, and targeting, and avoiding side effects of drugs. These peptides can also be used as drugs themselves. In this review, we describe the basic structure and characteristics of self-assembling peptides and the various factors that affect the formation of peptide-based structures. We also summarize the applications of self-assembling peptides in the treatment of various diseases, including cancer. Furthermore, the in-cell self-assembly of peptides, termed reverse self-assembly, is discussed as a novel paradigm for self-assembling peptide-based nanovehicles and nanomedicines.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras/uso terapéutico , Neoplasias/tratamiento farmacológico , Péptidos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Materiales Biocompatibles/química , Técnicas de Cultivo de Célula/métodos , Humanos , Nanoestructuras/química , Medicina Regenerativa/métodos
9.
Mol Cell Biochem ; 428(1-2): 57-66, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28063003

RESUMEN

Biological effect of poly-L-arginine (PLR), the linear homopolymer comprised of L-arginine, was investigated to determine the activity of suppressing prions. PLR decreased the level of scrapie prion protein (PrPSc) in cultured cells permanently infected with prions in a concentration-dependent manner. The PrPSc inhibition efficacy of PLR was greater than that of another prion-suppressant poly-L-lysine (PLK) in a molecular mass-dependent fashion. The effective concentration of PLR to inhibit prions was achieved safely below the cytotoxic concentrations, and overall cytotoxicity of PLR was similar to that of PLK. PLR did not alter the cellular prion protein (PrPC) level and was unable to change the states of preformed recombinant PrP aggregates and PrPSc from prion-infected cells. These data eliminate the possibility that the action mechanism of PLR is through removal of PrPC and pre-existing PrPSc. However, PLR formed complexes with plasminogen that stimulates prion propagation via conversion of PrPC to the misfolded isoform, PrPSc. The plasminogen-PLR complex demonstrated the greater positive surface charge values than the similar complex with PLK, raising the possibility that PLR interferes with the role of cofactor for PrPSc generation better than PLK.


Asunto(s)
Péptidos/farmacología , Plasminógeno/metabolismo , Proteínas PrPSc/antagonistas & inhibidores , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Ratones , Polilisina/farmacología , Proteínas PrPC/metabolismo , Isoformas de Proteínas/metabolismo
10.
Biomacromolecules ; 18(3): 943-950, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28128930

RESUMEN

The first step in the conventional approach to self-assembled biomaterials is to develop well-defined nanostructures in vitro, which is followed by disruption of the preformed nanostructures at the inside of the cell to achieve bioactivity. Here, we propose an inverse strategy to develop in-cell gain-of-function self-assembled nanostructures. In this approach, the supramolecular building blocks exist in a unimolecular/unordered state in vitro or at the outside of the cell and assemble into well-defined nanostructures after cell internalization. We used block copolypeptides of an oligoarginine and a self-assembling peptide as building blocks and investigated correlations among the nanostructural state, antiprion bioactivity, and cytotoxicity. The optimal bioactivity (i.e., the highest antiprion activity and lowest cytotoxicity) was obtained when the building blocks existed in a unimolecular/unordered state in vitro and during the cell internalization process, exerting minimal cytotoxic damage to cell membranes, and were subsequently converted into high-charge-density vesicles in the low pH endosome/lysosomes in vivo, thus, resulting in the significantly enhanced antiprion activity. In particular, the in-cell self-assembly concept presents a feasible approach to developing therapeutics against protein misfolding diseases. In general, the in-cell self-assembly provides a novel inverse methodology to supramolecular bionanomaterials.


Asunto(s)
Ciclo Celular , Nanoestructuras/química , Péptidos/química , Priones/antagonistas & inhibidores , Materiales Biocompatibles/química , Línea Celular , Membrana Celular/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Péptidos/antagonistas & inhibidores , Priones/química
11.
J Microencapsul ; 34(3): 250-261, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28557649

RESUMEN

The aim of this study was to develop docetaxel-incorporated lipid nanoparticles (DTX-NPs) to improve the pharmacokinetic behaviour of docetaxel (DTX) after oral and parenteral administration via sustained release. DTX-NPs were prepared by nanotemplate engineering technique with palmityl alcohol as a solid lipid and Tween-40/Span-40/Myrj S40 as a surfactants mixture. Spherical DTX-NPs below 100 nm were successfully prepared with a narrow particle size distribution, 96% of incorporation efficiency and 686 times increase in DTX solubility. DTX-NPs showed a sustained release over 24 h in phosphate-buffered saline and simulated gastric and intestinal fluids, while DTX-micelles released DTX completely within 12 h. The half-maximal inhibitory concentration (IC50) of DTX-NPs against human breast cancer MCF-7 cells was 1.9 times lower than that of DTX-micelles and DTX solution. DTX-NPs demonstrated 3.7- and 2.8-fold increase in the area under the plasma concentration-time curve compared with DTX-micelles after oral and parenteral administration, respectively.


Asunto(s)
Preparaciones de Acción Retardada , Portadores de Fármacos/química , Nanopartículas/química , Taxoides/administración & dosificación , Taxoides/farmacocinética , Administración Oral , Antineoplásicos/farmacocinética , Docetaxel , Humanos , Lípidos/química , Células MCF-7
12.
Bioorg Med Chem Lett ; 26(4): 1130-5, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26832220

RESUMEN

Prostate cancer is the most frequently diagnosed cancer and is one of the leading causes of male cancer death in the world. Recently, in the course of our screening for a novel anticancer compound, we synthesized carbocyclic analogs of pyrrolo[2,3-d]pyrimidine nucleoside; compounds 5, and 6. In the current study, we report the effects of compound 5 on pleiotropic induction of cell death via up-regulation of AR-associated p21(Cip1) protein in prostate cancer cells with different androgen responsiveness, such as LNCaP (androgen-dependent and -sensitive), LNCaP(C4-2) (androgen-independent and -sensitive; androgen-refractory), and DU145 (androgen-independent and -insensitive) cells. The treatment of LNCaP cells with 6 µM compound 5 for 24 h stimulated the androgen receptor (AR) activity and dramatically up-regulated transcription (56-fold) of p21(Cip1), which, in turn, induces typical apoptosis in the cells. However, induction of apoptosis through up-regulation (23-fold) of AR-associated p21(Cip1) achieved in LNCaP(C4-2) cells was possible by intensive cell treatment with compound 5 (9 µM, 48 h), because the cells are less sensitive and independent to androgen than LNCaP cells. Furthermore, 6 µM compound 5-treated DU145 cells, which exhibit extremely low AR activation due to no androgen responsiveness and dependency, showed neither up-regulation of p21(Cip1) nor apoptotic induction. Instead, a different type of cell death, autophagy-like death through the LC3B-associated autophagosome formation, was obviously induced in DU145 cells. Taken together, our results suggest that pleiotropic induction of prostate cancer cell death by compound 5 is determined by how efficiently and how abundantly androgen-dependent activation of the AR occurs, whereas compound 6 shows no induction of apoptosis in LNCaP cells.


Asunto(s)
Piridinas/química , Nucleósidos de Pirimidina/química , Pirroles/química , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Masculino , Poli(ADP-Ribosa) Polimerasas/metabolismo , Neoplasias de la Próstata , Nucleósidos de Pirimidina/síntesis química , Nucleósidos de Pirimidina/farmacología , Receptores Androgénicos/metabolismo , Regulación hacia Arriba/efectos de los fármacos
13.
Bioorg Med Chem Lett ; 26(16): 3963-7, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27422337

RESUMEN

Timosaponin AIII (TAIII) is a type of steroidal saponins isolated from Anemarrhena asphodeloides. It was known to improve learning and memory deficits through anti-inflammatory effects. TAIII was also reported to induce autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells and inhibit the growth of human colorectal cancer cells, thus regarded as a potential candidate for anti-cancer agent. In this study, we verified apoptosis-inducing and cell-cycle-arresting effects of TAIII in A549 human non-small-cell lung cancer (NSCLC) cells. Then, we report that TAIII suppresses migration and invasion of A549 human NSCLC cells. We propose that two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, which are well known to be involved in cancer-metastasis, are attenuated by the treatment of TAIII. TAIII exerts its suppressive effects on MMP-2 and MMP-9 via inhibitions of ERK1/2, Src/FAK and ß-catenin signalings which are closely related with the regulations of MMP-2 and MMP-9.


Asunto(s)
Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Saponinas/química , Transducción de Señal/efectos de los fármacos , Esteroides/química , Células A549 , Anemarrhena/química , Anemarrhena/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Saponinas/toxicidad , Esteroides/toxicidad , beta Catenina/metabolismo , Familia-src Quinasas/metabolismo
14.
Biomed Chromatogr ; 30(6): 976-82, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26517716

RESUMEN

Gastrodia rhizome, a dried and steamed tuber of Gastrodia elata Blume (Orchidaceae), has been traditionally used in Korea, China and Japan for the treatment of neurological and nervous disorders such as headaches, dizziness, vertigo and convulsive illnesses. The ethyl acetate and water extracts of G. elata stimulated plasmin activity. The active ethyl acetate fraction was subjected to centrifugal partition chromatography (CPC) with a two-phase solvent system, composed of n-hexane-ethyl acetate-methanol-water (3:7:4:6, v/v) followed by semi-preparative HPLC purification to separate active compounds and the water fraction was purified by Diaion HP-20 resin and semi-preparative HPLC. In ethyl acetate extract, 4-hydroxybenzyl alcohol (1), 4-hydroxybenzoic acid (2), 4-hydroxybenzaldehyde (3), 4-ethoxymethylphenol (4), 4,4'-oxybis(methylene)diphenol (5) and 4,4'-methylenediphenol (6) were obtained with high purities. Parishin (7) and parishin B (8) were isolated from water extract. Among isolated compounds, 4-hydroxybenzyl alcohol (1), 4-hydroxybenzaldehyde (3) and 4-ethoxymethylphenol (4) significantly stimulated plasmin activity. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Fibrinolisina/aislamiento & purificación , Gastrodia/química , Fenoles/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
15.
J Med Virol ; 87(1): 175-86, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24978677

RESUMEN

Creutzfeldt-Jakob disease (CJD) is a representative human transmissible spongiform encephalopathy associated with central nervous system degeneration. Prions, the causative agents of CJD, are composed of misfolded prion proteins and are able to self-replicate. While CJD is a rare disease affecting only 1-1.5 people per million worldwide annually, it has attracted both scientific and public attention as a threatening disease since an epidemic of variant CJD (vCJD) cases appeared in the mid-1990s. Due to its unconventional transmission and invariable fatality, CJD poses a serious risk to public health. The hundreds of sporadic, genetic, and iatrogenic CJD cases as well as potential zoonotic transmission suggest that CJD is an ongoing concern for the field of medicine. Nevertheless, treatment aimed at clinical prevention and treatment that reverses the course of disease does not exist currently. Active surveillance and effective laboratory diagnosis of CJD are, therefore, critical. In this report, the surveillance systems and laboratory tests used currently to diagnose CJD in different countries are reviewed. The current efforts to improve surveillance and diagnosis for CJD using molecular and biochemical findings are also described.


Asunto(s)
Técnicas de Laboratorio Clínico/métodos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/epidemiología , Monitoreo Epidemiológico , Humanos
16.
Mediators Inflamm ; 2014: 270302, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25045209

RESUMEN

Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases.


Asunto(s)
Inflamación/inmunología , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Humanos , Transducción de Señal/fisiología , Quinasa Syk
17.
J Korean Med Sci ; 29(12): 1604-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25469058

RESUMEN

Misfolded isoform of prion protein (PrP), termed scrapie PrP (PrP(Sc)), tends to aggregate into various fibril forms. Previously, we reported various conditions that affect aggregation of recombinant PrP into amyloids. Because amyloidogenesis of PrP is closely associated with transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, we investigated infectivity of recombinant PrP amyloids generated in vitro. Using cultured cell lines which overexpress cellular PrP of different species, we measured the level of de novo synthesized PrP(Sc) in cells inoculated with recombinant mouse PrP amyloids. While PrP-overexpressing cells were susceptible to mouse-adapted scrapie prions used as the positive control, demonstrating the species barrier effect, infection with amyloids made of truncated recombinant PrP (PrP[89-230]) failed to form and propagate PrP(Sc) even in the cells that express mouse cellular PrP. This suggests that infectivity of PrP amyloids generated in vitro is different from that of natural prions. Recombinant PrP (89-230) amyloids tested in the current study retain no or a minute level, if any, of prion infectivity.


Asunto(s)
Riñón/metabolismo , Riñón/patología , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Priones/metabolismo , Proteínas Recombinantes/metabolismo , Animales , Línea Celular , Ratones , Conejos , Regulación hacia Arriba
18.
Dev Reprod ; 28(2): 29-36, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39055100

RESUMEN

Cellular prion protein (PrPC) encoded at Prnp gene is well-known to form a misfolded isoform, termed scrapie PrP (PrPSC) that cause transmissible degenerative diseases in central nervous system. The physiological role of PrPC has been proposed by many studies, showing that PrPC interacts with various intracellular, membrane, and extracellular molecules including mitochondrial inner membrane as a scaffold. PrPC is expressed in most cell types including reproductive organs. Numerous studies using PrPC knockout rodent models found no obvious phenotypic changes, in particular the clear phenotypes in development and reproduction have not demonstrated in these knockout models. However, various roles of PrPC have been evaluated at the cellular levels. In this review, we summarized the known roles of PrPC in various cell types and tissues with a special emphasis on those involved in reproduction.

19.
J Med Chem ; 67(13): 10601-10621, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38896548

RESUMEN

Inflammatory bowel disease (IBD) is characterized by abnormal immune responses, including elevated proinflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) in the gastrointestinal (GI) tract. This study presents the synthesis and anti-inflammatory evaluation of 2,4,5-trimethylpyridin-3-ol analogues, which exhibit dual inhibition of TNFα- and IL-6-induced inflammation. Analysis using in silico methods, including 3D shape-based target identification, modeling, and docking, identified G protein-coupled estrogen receptor 1 (GPER) as the molecular target for the most effective analogue, 6-26, which exhibits remarkable efficacy in ameliorating inflammation and restoring colonic mucosal integrity. This was further validated by surface plasmon resonance (SPR) assay results, which showed direct binding to GPER, and by the results showing that GPER knockdown abolished the inhibitory effects of 6-26 on TNFα and IL-6 actions. Notably, 6-26 displayed no cytotoxicity, unlike G1 and G15, a well-known GPER agonist and an antagonist, respectively, which induced necroptosis independently of GPER. These findings suggest that the GPER-selective compound 6-26 holds promise as a therapeutic candidate for IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Humanos , Animales , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Antiinflamatorios/síntesis química , Piridinas/farmacología , Piridinas/síntesis química , Piridinas/química , Piridinas/uso terapéutico , Ratones Endogámicos C57BL , Relación Estructura-Actividad
20.
Amino Acids ; 44(3): 993-1000, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23179088

RESUMEN

Differential anti-prion activity of polylysine enantiomers was studied. Based on our recent discovery that poly-L-lysine (PLK) is a potent anti-prion agent, we investigated suppression of prions in cultured cells using poly-D-lysine (PDK). The results showed that PDK was more efficacious than PLK to inhibit prions. Protein misfolding cyclic amplification assay demonstrated improved efficacy of PDK in inhibiting plasminogen-mediated prion propagation, corresponding to the enantio-preference of PDK observed in cultured cells. Furthermore, our study demonstrated that polylysines formed a complex with plasminogen. These results propose to hypothesize a plausible mechanism that elicits prion inhibition by polylysine enantiomers.


Asunto(s)
Regulación hacia Abajo , Polilisina/metabolismo , Priones/metabolismo , Línea Celular , Humanos , Cinética , Plasminógeno/metabolismo , Polilisina/química , Priones/antagonistas & inhibidores , Priones/química , Pliegue de Proteína , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA