Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Anal Chem ; 96(22): 8846-8854, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38758170

RESUMEN

Despite growing ecological concerns, studies on microplastics and nanoplastics are still in their initial stages owing to technical hurdles in analytical techniques, especially for nanoplastics. We provide an overview of the general attributes of micro/nanoplastics in natural environments and analytical techniques commonly used for their analysis. After demonstrating the analytical challenges associated with the identification of nanoplastics due to their distinctive characteristics, we discuss recent technological advancements for detecting nanoplastics.

2.
Small ; 19(29): e2207003, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37017491

RESUMEN

The Fabry-Perot (FP) resonator is an intuitive and versatile optical structure owing to its uniqueness in light-matter interactions, yielding resonance with a wide range of wavelengths as it couples with photonic materials encapsulated in a dielectric cavity. Leveraging the FP resonator for molecular detection, a simple geometry of the metal-dielectric-metal structure is demonstrated to allow tuning of the enhancement factors (EFs) of surface-enhanced Raman scattering (SERS). The optimum near-field EF from randomly dispersed gold nano-gaps and dynamic modulation of the far-field SERS EF by varying the optical resonance of the FP etalon are systematically investigated by performing computational and experimental analyses. The proposed strategy of combining plasmonic nanostructures with FP etalons clearly reveals wavelength matching of FP resonance to excitation and scattering wavelengths plays a key role in determining the magnitude of the SERS EF. Finally, the optimum near-field generating optical structure with controlled dielectric cavity is suggested for a tunable SERS platform, and its dynamic SERS switching performance is confirmed by demonstrating information encryption through liquid immersion.

3.
J Am Chem Soc ; 144(48): 21887-21896, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36367984

RESUMEN

Passive water penetration across the cell membrane by osmotic diffusion is essential for the homeostasis of cell volume, in addition to the protein-assisted active transportation of water. Since membrane components can regulate water permeability, controlling compositional variation during the volume regulatory process is a prerequisite for investigating the underlying mechanisms of water permeation and related membrane dynamics. However, the lack of a viable in vitro membrane platform in hypertonic solutions impedes advanced knowledge of cell volume regulation processes, especially cholesterol-enriched lipid domains called lipid rafts. By reconstituting the liquid-ordered (Lo) domain as a likeness of lipid rafts, we verified suppressed water permeation across the Lo domains, which had yet to be confirmed with experimental demonstrations despite a simulation approach. With the help of direct transfer of the Lo domains from vesicles to supported lipid membranes, the biological roles of lipid composition in suppressed water translocation were experimentally confirmed. Additionally, the improvement in membrane stability under hypertonic conditions was demonstrated based on molecular dynamics simulations.


Asunto(s)
Lípidos , Agua
4.
Small ; 18(14): e2107060, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35187805

RESUMEN

With narrow and dense nanoarchitectures increasingly adopted to improve optical functionality, achieving the complete wetting of photonic devices is required when aiming at underwater molecule detection over the water-repellent optical materials. Despite continuous advances in photonic applications, real-time monitoring of nanoscale wetting transitions across nanostructures with 10-nm gaps, the distance at which photonic performance is maximized, remains a chronic hurdle when attempting to quantify the water influx and molecules therein. For this reason, the present study develops a photonic switch that transforms the wetting transition into perceivable color changes using a liquid-permeable Fabry-Perot resonator. Electro-capillary-induced Cassie-to-Wenzel transitions produce an optical memory effect in the photonic switch, as confirmed by surface-energy analysis, simulations, and an experimental demonstration. The results show that controlling the wetting behavior using the proposed photonic switch is a promising strategy for the integration of aqueous media with photonic hotspots in plasmonic nanostructures such as biochemical sensors.


Asunto(s)
Nanoestructuras , Agua , Acción Capilar , Nanoestructuras/química , Fotones , Agua/química , Humectabilidad
5.
Opt Express ; 29(1): 12-23, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33362096

RESUMEN

Signal enhancement of spectroscopies including terahertz time-domain spectroscopy (THz-TDS) and surface-enhanced Raman scattering (SERS) is a critical issue for effective molecular detection and identification. In this study, the sensing performance between THz-TDS and SERS individually accompanied by the proper plasmonic subwavelength structures was compared. For the precisely quantitative study on the optical properties of rhodamine 6G (R6G) dyes, SERS incorporates with the non-linearly enhanced Raman emissions at the molecular characteristic peaks while THz-TDS refers to the transmittance change and the shift of the spectral resonance. The local molecular density-dependent trade-off relationship between limit-of-detection and quenching was observed from both measurements. The specificity for two samples, R6G and methylene blue, is determined by the discriminations in spectral features such as the intensity ratio of assigned peaks in SERS and transmittance difference in THz-TDS. The comprehension of field enhancement by the specific nanostructures was supported by the finite-element method-based numerical computations. As a result, both spectroscopic techniques with the well-tailored nanostructures show great potential for highly sensitive, reproducible, label-free, and cost-effective diagnosis tools in the biomedical fields.

6.
Opt Express ; 27(14): 19119-19129, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31503675

RESUMEN

A metasurface is a planar optical device that controls the phase, amplitude, and polarization of light through subwavelength-scale unit elements, called meta-atom. The tunability of plasmonic vortex lens (PVL) which generates surface plasmon polaritons (SPPs) carrying orbital angular momentum can be improved by using meta-atom. However, conventional PVLs exhibit nonuniform field profiles according to the incident polarization states owing to the spin-orbital interaction (SOI) effect observed during SPP excitation. This paper describes a method of compensating for SOI of PVL by using the geometric phase of distributed nanoslits in a gold film. By designing the orientation angles of slit pairs, the anti-phase of the SOI effect can be generated for compensatory effect. In addition, polarization-independent PVLs are designed by applying a detour phase based on the position of the slit pairs. PVLs for center-, off-center-, and multiple-focus cases are demonstrated and measured via a near-field scanning microscope.

7.
Sensors (Basel) ; 19(15)2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31362386

RESUMEN

The Global Satellite Navigation System (GNSS) used in various location-based services is accurate and stable in outdoor environments. However, it cannot be utilized in an indoor environment because of low signal availability and degradation of accuracy due to the multipath distortion of satellite signals in urban areas. On the contrary, LTE signals are available almost everywhere in urban areas and are quite stable without much variation throughout the year. This is because of the fixed location of base stations and the well-maintained policy of mobile communication service providers. Its varied stability and reliability make LTE signals a more viable method for localization. However, there are some complexities in utilizing LTE signals including signal interference distortion phenomena during propagation multipath fading, and various types of noise. In this paper, we propose a surface correlation-based fingerprinting method to utilize LTE signals for localization in urban areas. The surface correlation converts timely measured signal strength into spatial pattern using the walking distance from a Pedestrian Dead-Reckoning (PDR). The surface correlation is carried out by comparing the spatial signal strength pattern of a pedestrian`s movement trajectory with a fingerprinting database to estimate the location. A reference trajectory of the moving pedestrian is chosen to have a greater correlation among the multiple trajectory candidates generated from a link-based fingerprinting database. By comparing spatial signal strength patterns, the proposed method can improve robustness in localization overcoming the accuracy degradation problem due to RF multipath and noise that are dominant in the conventional RSS measurement-based LTE localization scheme. The test results in urban areas demonstrate that the proposed surface correlation-based fingerprinting method has improved performance compared to the other conventional methods, thus proving to be a useful complementary method to the GNSS in urban areas.

8.
Opt Express ; 25(24): 30591-30597, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29221086

RESUMEN

We introduce a robust control method of terahertz (THz) transmission by tuning filling factors of Au nanoparticles (AuNPs) inside nano slot antennas. AuNPs in sub-100 nm diameters were spread over the nano slot antennas, followed by sweeping them into the slots. AuNPs can be efficiently localized and inserted into nano slots where the THz fields are greatly enhanced, by a "squeegee" made of the polydimethylsiloxane (PDMS). The sweeping of the AuNPs results in further dramatic reduction of THz transmission by suppressing the fundamental resonance mode of the nano slot, as compared to a typical random dropping case. It definitely works for an accurate THz transmission control, as well as the removal of unwanted ions that occasionally confuse signal accuracy from the target signals. Our approach provides a complete reinterpretation of sample deposition for further steady demands in developing ultrasensitive terahertz (THz) molecule sensors.

9.
J Nanosci Nanotechnol ; 16(6): 6355-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27427717

RESUMEN

We describe the dynamic manipulation of the charged lipids in a confined geometry where two dispersive factors arising from the random diffusion-based Brownian motion and the field-induced drift of target lipids compete with each other. It is found that the lateral distribution of the target lipids is well controlled through a combined effect of an external electric field and the geometric restrictions by the confinement. The dynamic manipulation scheme for the charged lipids in two-dimension would be useful for understanding the spatial organization of membrane components in a supported lipid membrane mimicking a real cell membrane and for producing membrane-based microarrays.


Asunto(s)
Membrana Celular/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Análisis por Micromatrices/métodos , Difusión
10.
J Am Chem Soc ; 137(27): 8692-5, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26053547

RESUMEN

During vesicle budding or endocytosis, biomembranes undergo a series of lipid- and protein-mediated deformations involving cholesterol-enriched lipid rafts. If lipid rafts of high bending rigidities become confined to the incipient curved membrane topology such as a bud-neck interface, they can be expected to reform as ring-shaped rafts. Here, we report on the observation of a disk-to-ring shape morpho-chemical transition of a model membrane in the absence of geometric constraints. The raft shape transition is triggered by lateral compositional heterogeneity and is accompanied by membrane deformation in the vertical direction, which is detected by height-sensitive fluorescence interference contrast microscopy. Our results suggest that a flat membrane can become curved simply by dynamic changes in local chemical composition and shape transformation of cholesterol-rich domains.


Asunto(s)
Colesterol/química , Lípidos de la Membrana/química , Microdominios de Membrana/química , Fluidez de la Membrana , Microdominios de Membrana/ultraestructura , Microscopía Fluorescente , Imagen Óptica
11.
J Nanosci Nanotechnol ; 14(8): 6069-71, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25936059

RESUMEN

We develop a simple and biocompatible method of patterning proteins on a wettability gradient surface by thermo-transfer printing. The wettability gradient is produced on a poly(dimethylsiloxane) (PDMS)-modified glass substrate through the temperature gradient during thermo-transfer printing. The water contact angle on the PDMS-modified surface is found to gradually increase along the direction of the temperature gradient from a low to a high temperature region. Based on the wettability gradient, the gradual change in the adsorption and immobilization of proteins (cholera toxin B subunit) is achieved in a microfluidic cell with the PDMS-modified surface.


Asunto(s)
Materiales Biocompatibles , Toxina del Cólera/química , Humectabilidad , Dimetilpolisiloxanos/química , Microfluídica , Propiedades de Superficie
12.
Adv Mater ; 36(3): e2308975, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37994274

RESUMEN

With the advancements of nanotechnology, innovative photonic designs coupled with functional materials provide a unique way to acquire, share, and respond effectively to information. It is found that the simple deposition of a 30 nm-thick palladium nanofilm on a terahertz (THz) metasurface chip with a 14 nm-wide effective nanogap of asymmetric materials and geometries allows the tracking of both interatomic and interfacial gas-matter interactions, including gas adsorption, hydrogenation (or dehydrogenation), metal phase changes, and unique water-forming reactions. Combinatorial analyses by simulation and experimental measurements demonstrate the distinct nanostructures, which leads to significant light-matter interactions and corresponding THz absorption in a real-time, highly repeatable, and reliable manner. The complex lattice dynamics and intrinsic properties of metals influenced by hydrogen gas exposure are also thoroughly examined using systematically controlled ternary gas mixture devices that mimic normal temperature and pressure. Furthermore, the novel degrees of freedom are utilized to analyze various physical phenomena, and thus, analytical methods that enable the tracking of unknown hidden stages of water-forming reactions resulting in water growth are introduced. A single exposure of the wave spectrum emphasizes the robustness of the proposed THz nanoscopic probe, bridging the gap between fundamental laboratory research and industry.

13.
ACS Nano ; 17(3): 2114-2123, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36574486

RESUMEN

Emerging as substantial concerns in the ecosystem, submicron plastics have attracted much attention for their considerable hazards. However, their effect and even amount in the environment remain unclear. Establishing a substantive analytic platform is essential to expand the understanding of nanoplastics. However, the issues of diffusion and detection limit that arise from ultradiluted concentration and extremely small scales of nanoplastics leave significant technical hurdles to analyze the nanoplastic pollutants. In this study, we obtain effective Raman signals in real time from underwater nanoplastics with ultralow concentrations via AC electro-osmotic flows and dielectrophoretic tweezing. This enables the field-induced active collection of nanoplastics toward the optical sensing area from remote areas in a rapid manner, integrating conventional technical skills of preconcentration, separation, and identification in a single process. A step further, synergetic combination with plasmonic nanorods, accomplishes the highest on-site detection performance so far.

14.
Biosens Bioelectron ; 178: 113018, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33524704

RESUMEN

Stem cell-based therapies have recently emerged to treat various incurable diseases and disorders. Types of stem cell-derived cells and their functions should be intensively analyzed before therapy. However, current pre-treatment steps for biological analysis are mostly destructive. Here, we report a novel optical method that enables ultra-fast and label-free characterization of cells, eliminating invasive, destructive steps. The technique, referred to as "autofluorescence-Raman mapping integration (ARMI)" analysis uses cell autofluorescence (AF) to reveal cellular morphology and cytosolic microstructures, while Raman mapping allows site-specific intensive analysis of target molecules, which enables ultra-fast identification of cell types. We used human mesenchymal stem cells (MSCs) as a model and induced adipogenesis. Lipid droplets in cells appeared as "blanks" in three-dimensional AF images and site-specific Raman mapping guided by AF identified the structure and components of the CH2 stretch. Adipogenesis could be rapidly and precisely analyzed, not only for the same batch but also for different batches. Therefore, the developed tool is highly useful for the accurate screening of stem cell differentiation and implementation in biomedical and clinical applications.


Asunto(s)
Adipogénesis , Técnicas Biosensibles , Diferenciación Celular , Humanos , Espectrometría Raman , Células Madre
15.
Adv Sci (Weinh) ; 8(11): e2004826, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34105290

RESUMEN

Probing the kinetic evolution of nanoparticle (NP) growth in liquids is essential for understanding complex nano-phases and their corresponding functions. Terahertz (THz) sensing, an emerging technology for next-generation laser photonics, has been developed with unique photonic features, including label-free, non-destructive, and molecular-specific spectral characteristics. Recently, metasurface-based sensing platforms have helped trace biomolecules by overcoming low THz absorption cross-sectional limits. However, the direct probing of THz signals in aqueous environments remains difficult. Here, the authors report that vertically aligned nanogap-hybridized metasurfaces can efficiently trap traveling NPs in the sensing region, thus enabling us to monitor the real-time kinetic evolution of NP assemblies in liquids. The THz photonics approach, together with an electric tweezing technique via spatially matching optical hotspots to particle trapping sites with a nanoscale spatial resolution, is highly promising for underwater THz analysis, forging a route toward unraveling the physicochemical events of nature within an ultra-broadband wavelength regime.

16.
Nat Commun ; 12(1): 3741, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145296

RESUMEN

Despite technological advances in biomolecule detections, evaluation of molecular interactions via potentiometric devices under ion-enriched solutions has remained a long-standing problem. To avoid severe performance degradation of bioelectronics by ionic screening effects, we cover probe surfaces of field effect transistors with a single film of the supported lipid bilayer, and realize respectable potentiometric signals from receptor-ligand bindings irrespective of ionic strength of bulky solutions by placing an ion-free water layer underneath the supported lipid bilayer. High-energy X-ray reflectometry together with the circuit analysis and molecular dynamics simulation discovered biochemical findings that effective electrical signals dominantly originated from the sub-nanoscale conformational change of lipids in the course of receptor-ligand bindings. Beyond thorough analysis on the underlying mechanism at the molecular level, the proposed supported lipid bilayer-field effect transistor platform ensures the world-record level of sensitivity in molecular detection with excellent reproducibility regardless of molecular charges and environmental ionic conditions.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Membrana Dobles de Lípidos/química , Potenciometría/instrumentación , Potenciometría/métodos , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Concentración Osmolar , Transistores Electrónicos
17.
ACS Appl Mater Interfaces ; 12(35): 39881-39891, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805947

RESUMEN

We report the surface-energy-dependent wetting transition characteristics of an evaporating water droplet on surface-energy-controlled microcavity structures with functional nanocoatings. The droplet wetting scenarios were categorized into four types depending on the synergistic effect of surface energy and pattern size. The silicon (Si) microcavity surfaces (γSi = 69.8 mJ/m2) and the polytetrafluoroethylene (PTFE)-coated microcavity surfaces (γPTFE = 15.0 mJ/m2) displayed stable Wenzel and Cassie wetting states, respectively, irrespective of time. In contrast, diamond-like carbon (DLC)-coated (γDLC = 55.5 mJ/m2) and fluorinated diamond-like carbon (FDLC)-coated (γFDLC = 36.2 mJ/m2) surfaces demonstrated a time-dependent transition of wetting states. In particular, the DLC-coated surface showed random filling of microcavities at the earlier time point, while the FDLC-coated surface displayed directional filling of microcavities at the late stage of drop evaporation. Such dynamic wetting scenarios based on surface energy, in particular, the random and directional wetting transitions related to surface energy of nanocoatings have not been explored previously. Furthermore, the microscopic role of nanocoating in the wetting scenarios was analyzed by monitoring the time-dependent deformation and movement of the air-water interface (AWI) at individual cavities using the fluorescence interference-contrast (FLIC) technique. A coating-dependent depinning mechanism of the AWI was responsible for variable filling of cavities leading to time-dependent wetting scenarios. A capillary wetting model was used to relate this depinning event to the evaporation-induced internal flow within the droplet. Interestingly, FLIC analysis revealed that a hydrophilic nanocoating can induce microscopic hydrophobicity near the cavity edges leading to delayed and variable cavity filling. The surface energy-dependent classification of the wetting scenarios may help the design of novel evaporation-assisted thermodynamic and mass-transfer processes.

18.
Light Sci Appl ; 9: 175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088492

RESUMEN

Going beyond an improved colour gamut, an asymmetric colour contrast, which depends on the viewing direction, and its ability to readily deliver information could create opportunities for a wide range of applications, such as next-generation optical switches, colour displays, and security features in anti-counterfeiting devices. Here, we propose a simple Fabry-Perot etalon architecture capable of generating viewing-direction-sensitive colour contrasts and encrypting pre-inscribed information upon immersion in particular solvents (optical camouflage). Based on the experimental verification of the theoretical modelling, we have discovered a completely new and exotic optical phenomenon involving a tuneable colour switch for viewing-direction-dependent information delivery, which we define as asymmetric optical camouflage.

19.
Biosens Bioelectron ; 170: 112663, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33011619

RESUMEN

Terahertz (THz) imaging technology has shown significant potential for use in biomedical imaging owing to its non-ionizing characteristics by its low photon energy and its ultrabroadband spectral comparability with many molecular vibrational resonances. However, despite the significant advantage of being able to identify bio-materials in label-free configurations, most meaningful signals are buried by huge water absorption, thus it is very difficult to distinguish them using the small differences in optical constants at THz regime, limiting the practical application of this technology. Here, we demonstrate advanced THz imaging with enhanced color contrast by the use of THz field that is localized and enhanced by a nanometer-scale slot array. THz images of a biological specimen, such as mouse brain tissue and fingerprint, on a nano-slot array-based metamaterial sensing chip, which is elaborately fabricated in large-area, show a higher contrast and clearer boundary information in reflectance without any labeling. A reliable numerical solution to find accurate optical constants using THz nano-slot resonance for the quantitative analysis of target bio-specimens is also introduced. Finally, the precise optical properties of real bio-samples and atlas information are provided for specific areas where amyloid beta proteins, known to cause dementia, have accumulated in a mouse brain.


Asunto(s)
Técnicas Biosensibles , Imágen por Terahertz , Péptidos beta-Amiloides , Animales , Encéfalo/diagnóstico por imagen , Ratones
20.
Nat Commun ; 11(1): 2804, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499540

RESUMEN

Toward the development of surface-sensitive analytical techniques for biosensors and diagnostic biochip assays, a local integration of low-concentration target materials into the sensing region of interest is essential to improve the sensitivity and reliability of the devices. As a result, the dynamic process of sorting and accurate positioning the nanoparticulate biomolecules within pre-defined micro/nanostructures is critical, however, it remains a huge hurdle for the realization of practical surface-sensitive biosensors and biochips. A scalable, massive, and non-destructive trapping methodology based on dielectrophoretic forces is highly demanded for assembling nanoparticles and biosensing tools. Herein, we propose a vertical nanogap architecture with an electrode-insulator-electrode stack structure, facilitating the generation of strong dielectrophoretic forces at low voltages, to precisely capture and spatiotemporally manipulate nanoparticles and molecular assemblies, including lipid vesicles and amyloid-beta protofibrils/oligomers. Our vertical nanogap platform, allowing low-voltage nanoparticle captures on optical metasurface designs, provides new opportunities for constructing advanced surface-sensitive optoelectronic sensors.


Asunto(s)
Técnicas Biosensibles , Nanopartículas/química , Nanoestructuras/química , Nanotecnología/métodos , Bacillus subtilis , Materiales Biocompatibles , Simulación por Computador , Dimetilpolisiloxanos/química , Electroquímica , Electrodos , Diseño de Equipo , Hongos , Cinética , Lípidos/química , Ensayo de Materiales , Ósmosis , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA