Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 31(13): 135102, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783387

RESUMEN

Radiotherapy is one of the main treatments used to fight cancer. A major limitation of this modality is the lack of selectivity between cancerous and healthy tissues. One of the most promising strategies proposed in this last decade is the addition of nanoparticles with high-atomic number to enhance radiation effects in tumors. Gold nanoparticles (AuNPs) are considered as one of the best candidates because of their high radioenhancing property, simple synthesis and low toxicity. Ultra small AuNPs (core size of 2.4 nm and hydrodynamic diameter of 4.5 nm) covered with dithiolated diethylenetriaminepentaacetic acid (Au@DTDTPA) are of high interest because of their properties to bind MRI active or PET active compounds at their surface, to concentrate in some tumors and be eliminated via renal clearance thanks to their small size. These key figures make Au@DTDTPA the best candidate to develop image-guided radiotherapy. Surprisingly the capacity of the nanoparticles to penetrate cells, an important issue to predict radioenhancement, has not been established yet. Here, we report the uptake dynamics, internalization routes and excretion dynamics of Au@DTDTPA nanoparticles in various cancer cell lines including glioblastoma (U87-MG), chordoma (UM-Chor1), cervix (HeLa), prostate (PC3), and pancreatic (BxPC-3) cell lines as well as fibroblasts (Dermal fibroblasts). This study demonstrates a strong cell line dependence of the nanoparticle uptake and excretion dynamics. Different pathways of cell internalization evidenced here explain this dependence. As a major finding, the retention of Au@DTDTPA nanoparticles was found to be higher in cancer cells than in fibroblasts. This result strengthens the strategy of using nanoagents to improve tumor selectivity of radiation treatments. In particular Au@DTDTPA nanoparticles are good candidates to improve the treatment of radioresitant gliobastoma, pancreatic and prostate cancer in particular. In conclusion, the variability of cell-to-nanoparticle interaction is a new parameter to consider in the choice of nanoagents in a combined treatment.


Asunto(s)
Fibroblastos/citología , Oro/farmacocinética , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fibroblastos/química , Oro/química , Células HeLa , Humanos , Nanopartículas del Metal/química , Células PC-3 , Ácido Pentético/química , Fármacos Sensibilizantes a Radiaciones/química
2.
Bioconjug Chem ; 29(3): 795-803, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29283548

RESUMEN

In the field of cancer immunotherapy, an original approach consists of using granulocyte colony-stimulating factor (G-CSF) to target and activate neutrophils, cells of the innate immune system. G-CSF is a leukocyte stimulating molecule which is commonly used in cancer patients to prevent or reduce neutropenia. We focused herein on developing a G-CSF nanocarrier which could increase the in vivo circulation time of this cytokine, keeping it active for targeting the spleen, an important reservoir of neutrophils. G-CSF-functionalized silica and gold nanoparticles were developed. Silica nanoparticles of 50 nm diameter were functionalized by a solid phase synthesis approach. The technology enabled us to incorporate multiple functionalities on the surface such as a PEG as hydrophilic polymer, DTPA as 111In chelating agent and G-CSF. The gold nanocarrier consisted of nanoparticles of 2-3 nm diameter elaborated with DTPA groups on the surface and functionalized with G-CSF. We studied the particle biodistribution in mice with special attention to organs involved in the immune system. The two nanocarriers with similar functionalization of surface showed different pathways in mice, probably due to their difference in size. Considering the biodistribution after G-CSF functionalization, we confirmed that the protein was capable of modifying the pharmacokinetics by increasing the nanocarrier concentration in the spleen, a reservoir of G-CSF receptor expressing cells.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacocinética , Portadores de Fármacos/química , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/farmacocinética , Nanopartículas/química , Adyuvantes Inmunológicos/química , Animales , Sistemas de Liberación de Medicamentos , Oro/química , Factor Estimulante de Colonias de Granulocitos/química , Ratones , Nanopartículas/ultraestructura , Dióxido de Silicio/química , Bazo/inmunología , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA