Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Ther Nucleic Acids ; 35(1): 102090, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38187140

RESUMEN

Pancreatic neuroendocrine tumors (PanNETs) comprise a heterogeneous group of tumors with growing incidence. Recent molecular analyses provided a precise picture of their genomic and epigenomic landscape. Splicing dysregulation is increasingly regarded as a novel cancer hallmark influencing key tumor features. We have previously demonstrated that splicing machinery is markedly dysregulated in PanNETs. Here, we aimed to elucidate the molecular and functional implications of CUGBP ELAV-like family member 4 (CELF4), one of the most altered splicing factors in PanNETs. CELF4 expression was determined in 20 PanNETs, comparing tumor and non-tumoral adjacent tissue. An RNA sequencing (RNA-seq) dataset was analyzed to explore CELF4-linked interrelations among clinical features, gene expression, and splicing events. Two PanNET cell lines were employed to assess CELF4 function in vitro and in vivo. PanNETs display markedly upregulated CELF4 expression, which is closely associated with malignancy features, altered expression of key tumor players, and distinct splicing event profiles. Modulation of CELF4 influenced proliferation in vitro and reduced in vivo xenograft tumor growth. Interestingly, functional assays and RNA-seq analysis revealed that CELF4 silencing altered mTOR signaling pathway, enhancing the effect of everolimus. We demonstrate that CELF4 is dysregulated in PanNETs, where it influences tumor development and aggressiveness, likely by modulating the mTOR pathway, suggesting its potential as therapeutic target.

2.
Mol Oncol ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790138

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, characterized by late diagnosis and poor treatment response. Surgery is the only curative approach, only available to early-diagnosed patients. Current therapies have limited effects, cause severe toxicities, and minimally improve overall survival. Understanding of splicing machinery alterations in PDAC remains incomplete. Here, we comprehensively examined 59 splicing machinery components, uncovering dysregulation in pre-mRNA processing factor 8 (PRPF8) and RNA-binding motif protein X-linked (RBMX). Their downregulated expression was linked to poor prognosis and malignancy features, including tumor stage, invasion and metastasis, and associated with poorer survival and the mutation of key PDAC genes. Experimental modulation of these splicing factors in pancreatic cancer cell lines reverted their expression to non-tumor levels and resulted in decreased key tumor-related features. These results provide evidence that the splicing machinery is altered in PDAC, wherein PRPF8 and RBMX emerge as candidate actionable therapeutic targets.

3.
Exp Mol Med ; 55(1): 132-142, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36609600

RESUMEN

Hepatocellular carcinoma (HCC) pathogenesis is associated with alterations in splicing machinery components (spliceosome and splicing factors) and aberrant expression of oncogenic splice variants. We aimed to analyze the expression and potential role of the spliceosome component PRPF8 (pre-mRNA processing factor 8) in HCC. PRPF8 expression (mRNA/protein) was analyzed in a retrospective cohort of HCC patients (n = 172 HCC and nontumor tissues) and validated in two in silico cohorts (TCGA and CPTAC). PRPF8 expression was silenced in liver cancer cell lines and in xenograft tumors to understand the functional and mechanistic consequences. In silico RNAseq and CLIPseq data were also analyzed. Our results indicate that PRPF8 is overexpressed in HCC and associated with increased tumor aggressiveness (patient survival, etc.), expression of HCC-related splice variants, and modulation of critical genes implicated in cancer-related pathways. PRPF8 silencing ameliorated aggressiveness in vitro and decreased tumor growth in vivo. Analysis of in silico CLIPseq data in HepG2 cells demonstrated that PRPF8 binds preferentially to exons of protein-coding genes, and RNAseq analysis showed that PRPF8 silencing alters splicing events in multiple genes. Integrated and in vitro analyses revealed that PRPF8 silencing modulates fibronectin (FN1) splicing, promoting the exclusion of exon 40.2, which is paramount for binding to integrins. Consistent with this finding, PRPF8 silencing reduced FAK/AKT phosphorylation and blunted stress fiber formation. Indeed, HepG2 and Hep3B cells exhibited a lower invasive capacity in membranes treated with conditioned medium from PRPF8-silenced cells compared to medium from scramble-treated cells. This study demonstrates that PRPF8 is overexpressed and associated with aggressiveness in HCC and plays important roles in hepatocarcinogenesis by altering FN1 splicing, FAK/AKT activation and stress fiber formation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estudios Retrospectivos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Clin Transl Med ; 12(11): e1102, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36419260

RESUMEN

INTRODUCTION: Altered splicing landscape is an emerging cancer hallmark; however, the dysregulation and implication of the cellular machinery controlling this process (spliceosome components and splicing factors) in hepatocellular carcinoma (HCC) is poorly known. This study aimed to comprehensively characterize the spliceosomal profile and explore its role in HCC. METHODS: Expression levels of 70 selected spliceosome components and splicing factors and clinical implications were evaluated in two retrospective and six in silico HCC cohorts. Functional, molecular and mechanistic studies were implemented in three cell lines (HepG2, Hep3B and SNU-387) and preclinical Hep3B-induced xenograft tumours. RESULTS: Spliceosomal dysregulations were consistently found in retrospective and in silico cohorts. EIF4A3, RBM3, ESRP2 and SRPK1 were the most dysregulated spliceosome elements in HCC. EIF4A3 expression was associated with decreased survival and greater recurrence. Plasma EIF4A3 levels were significantly elevated in HCC patients. In vitro EIF4A3-silencing (or pharmacological inhibition) resulted in reduced aggressiveness, and hindered xenograft-tumours growth in vivo, whereas EIF4A3 overexpression increased tumour aggressiveness. EIF4A3-silencing altered the expression and splicing of key HCC-related genes, specially FGFR4. EIF4A3-silencing blocked the cellular response to the natural ligand of FGFR4, FGF19. Functional consequences of EIF4A3-silencing were mediated by FGFR4 splicing as the restoration of non-spliced FGFR4 full-length version blunted these effects, and FGFR4 inhibition did not exert further effects in EIF4A3-silenced cells. CONCLUSIONS: Splicing machinery is strongly dysregulated in HCC, providing a source of new diagnostic, prognostic and therapeutic options in HCC. EIF4A3 is consistently elevated in HCC patients and associated with tumour aggressiveness and mortality, through the modulation of FGFR4 splicing.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Empalmosomas/genética , Carcinoma Hepatocelular/genética , Estudios Retrospectivos , Neoplasias Hepáticas/genética , Oncogenes , Factores de Empalme de ARN/genética , Soplos Cardíacos , Proteínas Serina-Treonina Quinasas , Proteínas de Unión al ARN , Factor 4A Eucariótico de Iniciación/genética , ARN Helicasas DEAD-box
5.
Front Med (Lausanne) ; 8: 720128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869418

RESUMEN

Checkpoint with forkhead-associated and ring finger domains (CHFR) has been proposed as a predictive and prognosis biomarker for different tumor types, but its role in pancreatic ductal adenocarcinoma (PDAC) remains unknown. The aim of this study was two-pronged: to review the role of CHFR in PDAC and evaluating CHFR as a potential predictive biomarker in this disease. For this purpose, we first explored the CHFR messenger (m)RNA expression and promoter methylation through the TCGA database. Secondly, the CHFR expression and promoter methylation were prospectively evaluated in a cohort of patients diagnosed with borderline (n = 19) or resectable (n = 16) PDAC by immunohistochemistry (IHC), methylation specific-PCR (MSP), and pyrosequencing. The results from the TCGA database showed significant differences in terms of progression-free survival (PFS) and overall survival (OS) based on the CHFR mRNA expression, which was likely independent from the promoter methylation. Importantly, our results showed that in primarily resected patients and also the entire cohort, a higher CHFR expression as indicated by the higher IHC staining intensity might identify patients with longer disease-free survival (DFS) and OS, respectively. Similarly, in the same cohorts, patients with lower methylation levels by pyrosequencing showed significantly longer OS than patients without this pattern. Both, the CHFR expression intensity and its promoter methylation were established as independent prognostic factors for PFS and OS in the entire cohort. In contrast, no significant differences were found between different methylation patterns for CHFR and the response to taxane-based neoadjuvant treatment. These results suggest the potential role of the higher expression of CHFR and the methylation pattern of its promoter as potential prognostic biomarkers in PDAC, thus warranting further comprehensive studies to extend and confirm our preliminary findings.

6.
Cancer Lett ; 496: 72-83, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038489

RESUMEN

Splicing alterations represent an actionable cancer hallmark. Splicing factor 3B subunit 1 (SF3B1) is a crucial splicing factor that can be targeted pharmacologically (e.g. pladienolide-B). Here, we show that SF3B1 is overexpressed (RNA/protein) in hepatocellular carcinoma (HCC) in two retrospective (n = 154 and n = 172 samples) and in five in silico cohorts (n > 900 samples, including TCGA) and that its expression is associated with tumor aggressiveness, oncogenic splicing variants expression (KLF6-SV1, BCL-XL) and decreased overall survival. In vitro, SF3B1 silencing reduced cell viability, proliferation and migration and its pharmacological blockade with pladienolide-B inhibited proliferation, migration, and formation of tumorspheres and colonies in liver cancer cell lines (HepG2, Hep3B, SNU-387), whereas its effects on normal-like hepatocyte-derived THLE-2 proliferation were negligible. Pladienolide-B also reduced the in vivo growth and the expression of tumor-markers in Hep3B-induced xenograft tumors. Moreover, SF3B1 silencing and/or blockade markedly modulated the activation of key signaling pathways (PDK1, GSK3b, ERK, JNK, AMPK) and the expression of cancer-associated genes (CDK4, CD24) and oncogenic SVs (KLF6-SV1). Therefore, the genetic and/or pharmacological inhibition of SF3B1 may represent a promising novel therapeutic strategy worth to be explored through randomized controlled trials.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Adulto , Anciano , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Fosfoproteínas/genética , Pronóstico , Factores de Empalme de ARN/genética , Estudios Retrospectivos , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Exp Clin Cancer Res ; 40(1): 382, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857016

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, requiring novel treatments to target both cancer cells and cancer stem cells (CSCs). Altered splicing is emerging as both a novel cancer hallmark and an attractive therapeutic target. The core splicing factor SF3B1 is heavily altered in cancer and can be inhibited by Pladienolide-B, but its actionability in PDAC is unknown. We explored the presence and role of SF3B1 in PDAC and interrogated its potential as an actionable target. METHODS: SF3B1 was analyzed in PDAC tissues, an RNA-seq dataset, and publicly available databases, examining associations with splicing alterations and key features/genes. Functional assays in PDAC cell lines and PDX-derived CSCs served to test Pladienolide-B treatment effects in vitro, and in vivo in zebrafish and mice. RESULTS: SF3B1 was overexpressed in human PDAC and associated with tumor grade and lymph-node involvement. SF3B1 levels closely associated with distinct splicing event profiles and expression of key PDAC players (KRAS, TP53). In PDAC cells, Pladienolide-B increased apoptosis and decreased multiple tumor-related features, including cell proliferation, migration, and colony/sphere formation, altering AKT and JNK signaling, and favoring proapoptotic splicing variants (BCL-XS/BCL-XL, KRASa/KRAS, Δ133TP53/TP53). Importantly, Pladienolide-B similarly impaired CSCs, reducing their stemness capacity and increasing their sensitivity to chemotherapy. Pladienolide-B also reduced PDAC/CSCs xenograft tumor growth in vivo in zebrafish and in mice. CONCLUSION: SF3B1 overexpression represents a therapeutic vulnerability in PDAC, as altered splicing can be targeted with Pladienolide-B both in cancer cells and CSCs, paving the way for novel therapies for this lethal cancer.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Células Madre Neoplásicas/metabolismo , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Adenocarcinoma/patología , Adulto , Anciano , Animales , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Pez Cebra
8.
J Clin Endocrinol Metab ; 104(8): 3389-3402, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30901032

RESUMEN

CONTEXT: Nonalcoholic fatty liver disease (NAFLD) is a common obesity-associated pathology characterized by hepatic fat accumulation, which can progress to fibrosis, cirrhosis, and hepatocellular carcinoma. Obesity is associated with profound changes in gene-expression patterns of the liver, which could contribute to the onset of comorbidities. OBJECTIVE: As these alterations might be linked to a dysregulation of the splicing process, we aimed to determine whether the dysregulation in the expression of splicing machinery components could be associated with NAFLD. PARTICIPANTS: We collected 41 liver biopsies from nonalcoholic individuals with obesity, with or without hepatic steatosis, who underwent bariatric surgery. INTERVENTIONS: The expression pattern of splicing machinery components was determined using a microfluidic quantitative PCR-based array. An in vitro approximation to determine lipid accumulation using HepG2 cells was also implemented. RESULTS: The liver of patients with obesity and steatosis exhibited a severe dysregulation of certain splicing machinery components compared with patients with obesity without steatosis. Nonsupervised clustering analysis allowed the identification of three molecular phenotypes of NAFLD with a unique fingerprint of alterations in splicing machinery components, which also presented distinctive hepatic and clinical-metabolic alterations and a differential response to bariatric surgery after 1 year. In addition, in vitro silencing of certain splicing machinery components (i.e., PTBP1, RBM45, SND1) reduced fat accumulation and modulated the expression of key de novo lipogenesis enzymes, whereas conversely, fat accumulation did not alter spliceosome components expression. CONCLUSION: There is a close relationship between splicing machinery dysregulation and NAFLD development, which should be further investigated to identify alternative therapeutic targets.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , Empalme del ARN , Adulto , Cirugía Bariátrica , Biopsia , Técnicas de Cultivo de Célula , Endonucleasas/genética , Femenino , Células Hep G2 , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Obesidad/cirugía , Proteína de Unión al Tracto de Polipirimidina/genética , Periodo Posoperatorio , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA