Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893424

RESUMEN

Acetic acid bacteria (AAB) and other members of the complex microbiotas, whose activity is essential for vinegar production, display biodiversity and richness that is difficult to study in depth due to their highly selective culture conditions. In recent years, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for rapidly identifying thousands of proteins present in microbial communities, offering broader precision and coverage. In this work, a novel method based on LC-MS/MS was established and developed from previous studies. This methodology was tested in three studies, enabling the characterization of three submerged acetification profiles using innovative raw materials (synthetic alcohol medium, fine wine, and craft beer) while working in a semicontinuous mode. The biodiversity of existing microorganisms was clarified, and both the predominant taxa (Komagataeibacter, Acetobacter, Gluconacetobacter, and Gluconobacter) and others never detected in these media (Asaia and Bombella, among others) were identified. The key functions and adaptive metabolic strategies were determined using comparative studies, mainly those related to cellular material biosynthesis, energy-associated pathways, and cellular detoxification processes. This study provides the groundwork for a highly reliable and reproducible method for the characterization of microbial profiles in the vinegar industry.


Asunto(s)
Ácido Acético , Proteínas Bacterianas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Ácido Acético/metabolismo , Ácido Acético/análisis , Ácido Acético/química , Cromatografía Liquida/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/análisis , Bacterias/metabolismo
2.
Microbiol Spectr ; 11(6): e0223823, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37962370

RESUMEN

IMPORTANCE: Colistin is one of the last remaining therapeutic options for dealing with Enterobacteriaceae. Unfortunately, heteroresistance to colistin is also rapidly increasing. We described the prevalence of colistin heteroresistance in a variety of wild-type strains of Klebsiella pneumoniae and the evolution of these strains with colistin heteroresistance to a resistant phenotype after colistin exposure and withdrawal. Resistant mutants were characterized at the molecular level, and numerous mutations in genes related to lipopolysaccharide formation were observed. In colistin-treated patients, the evolution of K. pneumoniae heteroresistance to resistance phenotype could lead to higher rates of therapeutic failure.


Asunto(s)
Colistina , Infecciones por Klebsiella , Humanos , Colistina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Klebsiella pneumoniae , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Pruebas de Sensibilidad Microbiana
3.
Antibiotics (Basel) ; 12(7)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37508209

RESUMEN

Heteroresistance to colistin can be defined as the presence of resistant subpopulations in an isolate that is susceptible to this antibiotic. Colistin resistance in Gram-negative bacteria is more frequently related to chromosomal mutations and insertions. This work aimed to study heteroresistance in nine clinical isolates of Klebsiella pneumoniae producing OXA-48 and to describe genomic changes in mutants with acquired resistance in vitro. Antimicrobial susceptibility was determined by broth microdilution (BMD) and heteroresistance by population analysis profiling (PAP). The proteins related to colistin resistance were analyzed for the presence of mutations. Additionally, PCR of the mgrB gene was performed to identify the presence of insertions. In the nine parental isolates, the PAP method showed colistin heteroresistance of colonies growing on plates with concentrations of up to 64 mg/L, corresponding to stable mutant subpopulations. The MICs of some mutants from the PAP plate containing 4×MIC of colistin had absolute values of ≤2 mg/L that were higher than the parental MICs and were defined as persistent variants. PCR of the mgrB gene identified an insertion sequence that inactivated the gene in 21 mutants. Other substitutions in the investigated mutants were found in PhoP, PhoQ, PmrB, PmrC, CrrA and CrrB proteins. Colistin heteroresistance in K. pneumoniae isolates was attributed mainly to insertions in the mgrB gene and point mutations in colistin resistance proteins. The results of this study will improve understanding regarding the mechanisms of colistin resistance in mutants of K. pneumoniae producing OXA-48.

4.
Microorganisms ; 8(8)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784425

RESUMEN

Sparkling wine is a distinctive wine. Saccharomyces cerevisiae flor yeasts is innovative and ideal for the sparkling wine industry due to the yeasts' resistance to high ethanol concentrations, surface adhesion properties that ease wine clarification, and the ability to provide a characteristic volatilome and odorant profile. The objective of this work is to study the proteins in a flor yeast and a conventional yeast that are responsible for the production of the volatile compounds released during sparkling wine elaboration. The proteins were identified using the OFFGEL fractionator and LTQ Orbitrap. We identified 50 and 43 proteins in the flor yeast and the conventional yeast, respectively. Proteomic profiles did not show remarkable differences between strains except for Adh1p, Fba1p, Tdh1p, Tdh2p, Tdh3p, and Pgk1p, which showed higher concentrations in the flor yeast versus the conventional yeast. The higher concentration of these proteins could explain the fuller body in less alcoholic wines obtained when using flor yeasts. The data presented here can be thought of as a proteomic map for either flor or conventional yeasts which can be useful to understand how these strains metabolize the sugars and release pleasant volatiles under sparkling wine elaboration conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA