Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36498967

RESUMEN

Skeletal muscle is formed by multinucleated myofibers originated by waves of hyperplasia and hypertrophy during myogenesis. Tissue damage triggers a regeneration process including new myogenesis and muscular remodeling. During myogenesis, the fusion of myoblasts is a key step that requires different genes' expression, including the fusogens myomaker and myomixer. The present work aimed to characterize these proteins in gilthead sea bream and their possible role in in vitro myogenesis, at different fish ages and during muscle regeneration after induced tissue injury. Myomaker is a transmembrane protein highly conserved among vertebrates, whereas Myomixer is a micropeptide that is moderately conserved. myomaker expression is restricted to skeletal muscle, while the expression of myomixer is more ubiquitous. In primary myocytes culture, myomaker and myomixer expression peaked at day 6 and day 8, respectively. During regeneration, the expression of both fusogens and all the myogenic regulatory factors showed a peak after 16 days post-injury. Moreover, myomaker and myomixer were present at different ages, but in fingerlings there were significantly higher transcript levels than in juveniles or adult fish. Overall, Myomaker and Myomixer are valuable markers of muscle growth that together with other regulatory molecules can provide a deeper understanding of myogenesis regulation in fish.


Asunto(s)
Dorada , Animales , Dorada/genética , Dorada/metabolismo , Proteínas Musculares/metabolismo , Desarrollo de Músculos/genética , Mioblastos/metabolismo , Músculo Esquelético/metabolismo , Micropéptidos
2.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120851

RESUMEN

Fish are rich in n-3 long-chain polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Due to the increasing use of vegetable oils (VO), their proportion in diets has lowered, affecting lipid metabolism and fillet composition. Rainbow trout cultured preadipocytes were treated with representative FA found in fish oils (EPA and DHA) or VO (linoleic, LA and alpha-linolenic, ALA acids), while EPA and LA were also orally administered, to evaluate their effects on adipogenesis and lipid metabolism. In vitro, all FA increased lipid internalization, with ALA producing the highest effect, together with upregulating the FA transporter fatp1. In vivo, EPA or LA increased peroxisome proliferator-activated receptors ppara and pparb transcripts abundance in adipose tissue, suggesting elevated ß-oxidation, contrary to the results obtained in liver. Furthermore, the increased expression of FA synthase (fas) and the FA translocase/cluster of differentiation (cd36) in adipose tissue indicated an enhanced uptake of lipids and lipogenesis de novo, whereas stable or low hepatic expression of genes involved in lipid transport and turnover was found. Thus, fish showed a similar tissue metabolic response to the short-term availability of EPA or LA in vivo, while in vitro VO-derived FA demonstrated greater potential inducing fat accumulation.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Oncorhynchus mykiss/metabolismo , Ácido alfa-Linolénico/administración & dosificación , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células Cultivadas , Dieta , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacología , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Hígado/metabolismo , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Plasma/efectos de los fármacos , Plasma/metabolismo , Ácido alfa-Linolénico/metabolismo , Ácido alfa-Linolénico/farmacología
3.
Animals (Basel) ; 14(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38254443

RESUMEN

Sustained swimming induces beneficial effects on growth and energy metabolism in some fish species. However, the absence of a standardized exercise regimen that guarantees an optimal response to physical activity is due to the anatomical, behavioral, and physiological differences among species, and the different conditions of tests applied, which are especially notable for the early stages of cultured species. The objective of this study was to assess the growth and metabolic responses of European sea bass submitted to continuous and moderate exercise exposure, selecting a practical swimming speed from swimming tests of groups of five fingerlings. The exercise-effects trial was carried out with 600 sea bass fingerlings (3-5 g body weight) distributed in two groups (control: voluntary swimming; exercised: under sustained swimming at 1.5 body lengths·s-1). After 6 weeks, growth parameters and proximal composition of both muscles were not altered by sustained swimming, but an increased synthetic capacity (increased RNA/DNA ratio) and more efficient use of proteins (decreased ΔN15) were observed in white muscle. The gene expression of mitochondrial proteins in white and red muscle was not affected by exercise, except for ucp3, which increased. The increase of UCP3 and Cox4 protein expression, as well as the higher COX/CS ratio of enzyme activity in white muscle, pointed out an enhanced oxidative capacity in this tissue during sustained swimming. In the protein expression of red muscle, only CS increased. All these metabolic adaptations to sustained exercise were also reflected in an enhanced maximum metabolic rate (MMR) with higher aerobic scope (AMS) of exercised fish in comparison to the non-trained fish, during a swimming test. These results demonstrated that moderate sustained swimming applied to sea bass fingerlings can improve the physical fitness of individuals through the enhancement of their aerobic capacities.

4.
Front Endocrinol (Lausanne) ; 14: 1101356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755925

RESUMEN

Fish muscle regeneration is still a poorly known process. In the present study, an injury was done into the left anterior epaxial skeletal muscle of seventy 15 g gilthead sea bream (Sparus aurata) juveniles to evaluate at days 0, 1, 2, 4, 8, 16 and 30 post-wound, the expression of several muscle genes. Moreover, transcripts' expression in the bone (uninjured tissue) was also analyzed. Histology of the muscle showed the presence of dead tissue the first day after injury and how the damaged fibers were removed and replaced by new muscle fibers by day 16 that kept growing up to day 30. Gene expression results showed in muscle an early upregulation of igf-2 and a downregulation of ghr-1 and igf-1. Proteolytic systems expression increased with capn2 and ctsl peaking at 1 and 2 days post-injury, respectively and mafbx at day 8. A pattern of expression that fitted well with active myogenesis progression 16 days after the injury was then observed, with the recovery of igf-1, pax7, cmet, and cav1 expression; and later on, that of cav3 as well. Furthermore, the first days post-injury, the cytokines il-6 and il-15 were also upregulated confirming the tissue inflammation, while tnfα was only upregulated at days 16 and 30 to induce satellite cells recruitment; overall suggesting a possible role for these molecules as myokines. The results of the bone transcripts showed an upregulation first, of bmp2 and ctsk at days 1 and 2, respectively; then, ogn1 and ocn peaked at day 4 in parallel to mstn2 downregulation, and runx2 and ogn2 increased after 8 days of muscle injury, suggesting a possible tissue crosstalk during the regenerative process. Overall, the present model allows studying the sequential involvement of different regulatory molecules during muscle regeneration, as well as the potential relationship between muscle and other tissues such as bone to control musculoskeletal development and growth, pointing out an interesting new line of research in this group of vertebrates.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Dorada , Animales , Factor I del Crecimiento Similar a la Insulina/metabolismo , Dorada/genética , Dorada/metabolismo , Músculos/metabolismo , Proteolisis
5.
Front Endocrinol (Lausanne) ; 14: 1211470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547324

RESUMEN

Aquaculture is the fastest-growing food production sector and nowadays provides more food than extractive fishing. Studies focused on the understanding of how teleost growth is regulated are essential to improve fish production. Cysteamine (CSH) is a novel feed additive that can improve growth through the modulation of the GH/IGF axis; however, the underlying mechanisms and the interaction between tissues are not well understood. This study aimed to investigate the effects of CSH inclusion in diets at 1.65 g/kg of feed for 9 weeks and 1.65 g/kg or 3.3 g/kg for 9 weeks more, on growth performance and the GH/IGF-1 axis in plasma, liver, stomach, and white muscle in gilthead sea bream (Sparus aurata) fingerlings (1.8 ± 0.03 g) and juveniles (14.46 ± 0.68 g). Additionally, the effects of CSH stimulation in primary cultured muscle cells for 4 days on cell viability and GH/IGF axis relative gene expression were evaluated. Results showed that CSH-1.65 improved growth performance by 16% and 26.7% after 9 and 18 weeks, respectively, while CSH-3.3 improved 32.3% after 18 weeks compared to control diet (0 g/kg). However, no significant differences were found between both experimental doses. CSH reduced the plasma levels of GH after 18 weeks and increased the IGF-1 ones after 9 and 18 weeks. Gene expression analysis revealed a significant upregulation of the ghr-1, different igf-1 splice variants, igf-2 and the downregulation of the igf-1ra and b, depending on the tissue and dose. Myocytes stimulated with 200 µM of CSH showed higher cell viability and mRNA levels of ghr1, igf-1b, igf-2 and igf-1rb compared to control (0 µM) in a similar way to white muscle. Overall, CSH improves growth and modulates the GH/IGF-1 axis in vivo and in vitro toward an anabolic status through different synergic ways, revealing CSH as a feasible candidate to be included in fish feed.


Asunto(s)
Cisteamina , Factor I del Crecimiento Similar a la Insulina , Dorada , Animales , Cisteamina/farmacología , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Dorada/crecimiento & desarrollo , Dorada/metabolismo , Alimentación Animal
6.
Antioxidants (Basel) ; 11(2)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35204202

RESUMEN

The combination of physical exercise and a balanced diet presents substantial health benefits and could improve fish production. However, the redox balance can be affected by training regimen, dietary macronutrient ratio and their interaction. In this study, we conjointly evaluated the effects of physical activity (by voluntary swimming (VS) or sustained swimming as exercise (Ex)) and diet composition (by high-protein (HP) or high-lipid (HE) commercial diets) after 6 weeks on oxidative stress status in liver, white muscle and red muscle of gilthead sea bream juveniles. The HE diet increased the biochemical redox markers' thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP) and reduced thiols (-SH) in the different tissues. Exercise increased AOPP and -SH levels in liver but reduced TBARS levels in white muscle. Regarding the expression of oxidative stress, chaperones and apoptosis-related genes, the VSHE group showed the highest values and the VSHP the lowest, whereas the application of sustained swimming partially equalized those differences. Diet composition modulated the enzyme activity, prioritizing the superoxide dismutase and catalase in the HE-fed groups and the glutathione-related enzymes in the HP groups. Exercise also altered enzyme activity, but in a tissue-dependent manner. Overall, the redox balance in gilthead sea bream juveniles can be affected by diet composition and sustained swimming. However, the response will partly depend on the interaction between these factors and the tissue studied. Therefore, the combination of an adequate diet and sustained exercise could be used in fish production to improve the physiological redox status.

7.
Front Physiol ; 12: 678985, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220544

RESUMEN

Sustained exercise promotes growth in different fish species, and in gilthead seabream we have demonstrated that it improves nutrient use efficiency. This study assesses for differences in growth rate, tissue composition and energy metabolism in gilthead seabream juveniles fed two diets: high-protein (HP; 54% protein, 15% lipid) or high energy (HE; 50% protein, 20% lipid), under voluntary swimming (VS) or moderate-to-low-intensity sustained swimming (SS) for 6 weeks. HE fed fish under VS conditions showed lower body weight and higher muscle lipid content than HP fed fish, but no differences between the two groups were observed under SS conditions. Irrespective of the swimming regime, the white muscle stable isotopes profile of the HE group revealed increased nitrogen and carbon turnovers. Nitrogen fractionation increased in the HP fed fish under SS, indicating enhanced dietary protein oxidation. Hepatic gene expression markers of energy metabolism and mitochondrial biogenesis showed clear differences between the two diets under VS: a significant shift in the COX/CS ratio, modifications in UCPs, and downregulation of PGC1a in the HE-fed fish. Swimming induced mitochondrial remodeling through upregulation of fusion and fission markers, and removing almost all the differences observed under VS. In the HE-fed fish, white skeletal muscle benefited from the increased energy demand, amending the oxidative uncoupling produced under the VS condition by an excess of lipids and the pro-fission state observed in mitochondria. Contrarily, red muscle revealed more tolerant to the energy content of the HE diet, even under VS conditions, with higher expression of oxidative enzymes (COX and CS) without any sign of mitochondrial stress or mitochondrial biogenesis induction. Furthermore, this tissue had enough plasticity to shift its metabolism under higher energy demand (SS), again equalizing the differences observed between diets under VS condition. Globally, the balance between dietary nutrients affects mitochondrial regulation due to their use as energy fuels, but exercise corrects imbalances allowing practical diets with lower protein and higher lipid content without detrimental effects.

8.
Animals (Basel) ; 11(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494202

RESUMEN

The upward trend of seawater temperature has encouraged improving the knowledge of its consequences on fish, considering also the development of diets including vegetable ingredients as an approach to achieve a more sustainable aquaculture. This study aims to determine the effects on musculoskeletal growth of: (1) a high-water temperature of 28 °C (versus 21 °C) in gilthead sea bream juveniles (Sparus aurata) fed with a diet rich in palm oil and, (2) feeding the fish reared at 28 °C with two other diets containing rapeseed oil or an equilibrated combination of both vegetable oils. Somatic parameters and mRNA levels of growth hormone-insulin-like growth factors (GH-IGFs) axis-, osteogenic-, myogenic-, lipid metabolism- and oxidative stress-related genes in vertebra bone and/or white muscle are analyzed. Overall, the data indicate that high-water rearing temperature in this species leads to different adjustments through modulating the gene expression of members of the GH-IGFs axis (down-regulating igf-1, its receptors, and binding proteins) and also, to bone turnover (reducing the resorption-activity genes cathepsin K (ctsk) and matrix metalloproteinase-9 (mmp9)) to achieve harmonic musculoskeletal growth. Moreover, the combination of palm and rapeseed oils seems to be the most beneficial at high-water rearing temperature for both balanced somatic growth and muscular fatty acid uptake and oxidation.

9.
Animals (Basel) ; 11(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34438639

RESUMEN

The physiological and endocrine benefits of sustained exercise in fish were largely demonstrated, and this work examines how the swimming activity can modify the effects of two diets (high-protein, HP: 54% proteins, 15% lipids; high-energy, HE: 50% proteins, 20% lipids) on different growth performance markers in gilthead sea bream juveniles. After 6 weeks of experimentation, fish under voluntary swimming and fed with HP showed significantly higher circulating growth hormone (GH) levels and plasma GH/insulin-like growth-1 (IGF-1) ratio than fish fed with HE, but under exercise, differences disappeared. The transcriptional profile of the GH-IGFs axis molecules and myogenic regulatory factors in liver and muscle was barely affected by diet and swimming conditions. Under voluntary swimming, fish fed with HE showed significantly increased mRNA levels of capn1, capn2, capn3, capns1a, n3, and ub, decreased gene and protein expression of Ctsl and Mafbx and lower muscle texture than fish fed with HP. When fish were exposed to sustained exercise, diet-induced differences in proteases' expression and muscle texture almost disappeared. Overall, these results suggest that exercise might be a useful tool to minimize nutrient imbalances and that proteolytic genes could be good markers of the culture conditions and dietary treatments in fish.

10.
Front Genet ; 12: 671491, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527016

RESUMEN

Recording the fillet lipid percentage in European seabass is crucial to control lipid deposition as a means toward improving production efficiency and product quality. The reference method for recording lipid content is solvent lipid extraction and is the most accurate and precise method available. However, it is costly, requires sacrificing the fish and grinding the fillet sample which limits the scope of applications, for example grading of fillets, recording live fish or selective breeding of fish with own phenotypes are all limited. We tested a rapid, cost effective and non-destructive handheld microwave dielectric spectrometer (namely the Distell fat meter) against the reference method by recording both methods on 313 European seabass (Dicentrarchus labrax). The total method agreement between the dielectric spectrometer and the reference method was assessed by Lin's concordance correlation coefficient (CCC), which was low to moderate CCC = 0.36-0.63. We detected a significant underestimation in accuracy of lipid percentage 22-26% by the dielectric spectrometer and increased imprecision resulting in the coefficient of variation (CV) doubling for dielectric spectrometer CV = 40.7-46% as compared to the reference method 27-31%. Substantial genetic variation for fillet lipid percentage was found for both the reference method (h 2 = 0.59) and dielectric spectroscopy (h 2 = 0.38-0.58), demonstrating that selective breeding is a promising method for controlling fillet lipid content. Importantly, the genetic correlation (r g) between the dielectric spectrometer and the reference method was positive and close to unity (r g = 0.96), demonstrating the dielectric spectrometer captures practically all the genetic variation in the reference method. These findings form the basis of defining the scope of applications and experimental design for using dielectric spectroscopy for recording fillet lipid content in European seabass and validate its use for selective breeding.

11.
Artículo en Inglés | MEDLINE | ID: mdl-30105002

RESUMEN

Ghrelin is involved in the regulation of growth in vertebrates through controlling different functions, such as feed intake, metabolism, intestinal activity or growth hormone (Gh) secretion. The aim of this work was to identify the sequences of preproghrelin and Ghrelin receptors (ghsrs), and to study their responses to different nutritional conditions in gilthead sea bream (Sparus aurata) juveniles. The structure and phylogeny of S. aurata preproghrelin was analyzed, and a tissue screening was performed. The effects of 21 days of fasting and 2, 5, 24 h, and 7 days of refeeding on plasma levels of Ghrelin, Gh and Igf-1, and the gene expression of preproghrelin, ghsrs and members of the Gh/Igf-1 system were determined in key tissues. preproghrelin and the receptors are well conserved, being expressed mainly in stomach, and in the pituitary and brain, respectively. Twenty-one days of fasting resulted in a decrease in growth while Ghrelin plasma levels were elevated to decrease at 5 h post-prandial when pituitary ghsrs expression was minimum. Gh in plasma increased during fasting and slowly felt upon refeeding, while plasma Igf-1 showed an inverse profile. Pituitary gh expression augmented during fasting reaching maximum levels at 1 day post-feeding while liver igf-1 expression and that of its splice variants decreased to lowest levels. Liver Gh receptors expression was down-regulated during fasting and recovered after refeeding. This study demonstrates the important role of Ghrelin during fasting, its acute down-regulation in the post-prandial stage and its interaction with pituitary Ghsrs and Gh/Igf-1 axis.

12.
PLoS One ; 12(12): e0187339, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29261652

RESUMEN

Proteolytic systems exert an important role in vertebrate muscle controlling protein turnover, recycling of amino acids (AA) or its use for energy production, as well as other functions like myogenesis. In fish, proteolytic systems are crucial for the relatively high muscle somatic index they possess, and because protein is the most important dietary component. Thus in this study, the molecular profile of proteolytic markers (calpains, cathepsins and ubiquitin-proteasome system (UbP) members) were analyzed during gilthead sea bream (Sparus aurata) myogenesis in vitro and under different AA treatments. The gene expression of calpains (capn1, capn3 and capns1b) decreased progressively during myogenesis together with the proteasome member n3; whereas capn2, capns1a, capns1b and ubiquitin (ub) remained stable. Contrarily, the cathepsin D (ctsd) paralogs and E3 ubiquitin ligases mafbx and murf1, showed a significant peak in gene expression at day 8 of culture that slightly decreased afterwards. Moreover, the protein expression analyzed for selected molecules presented in general the same profile of the mRNA levels, which was confirmed by correlation analysis. These data suggest that calpains seem to be more important during proliferation, while cathepsins and the UbP system appear to be required for myogenic differentiation. Concerning the transcriptional regulation by AA, the recovery of their levels after a short starvation period did not show effects on cathepsins expression, whereas it down-regulated the expression of capn3, capns1b, mafbx, murf1 and up-regulated n3. With regards to AA deficiencies, the major changes occurred at day 2, when leucine limitation suppressed ctsb and ctsl expression. Besides at the same time, both leucine and lysine deficiencies increased the expression of mafbx and murf1 and decreased that of n3. Overall, the opposite nutritional regulation observed, especially for the UbP members, points out an efficient and complementary role of these factors that could be useful in gilthead sea bream diets optimization.


Asunto(s)
Aminoácidos/farmacología , Regulación de la Expresión Génica , Desarrollo de Músculos , Músculos/metabolismo , Transcripción Genética , Animales , Células Cultivadas , Proteínas Musculares/metabolismo , Músculos/citología , Proteolisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Dorada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA