Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Rev Physiol Biochem Pharmacol ; 183: 45-101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32715321

RESUMEN

The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.


Asunto(s)
Neoplasias , Apoptosis , Proliferación Celular , Humanos , Canales Iónicos , Neoplasias/patología , Neovascularización Patológica
2.
Mol Biol Rep ; 50(1): 107-119, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36309615

RESUMEN

BACKGROUND: Particulate matter with an aerodynamic size ≤ 10 µm (PM10) is a risk factor for lung cancer development, mainly because some components are highly toxic. Polycyclic aromatic hydrocarbons (PAHs) are present in PM10, such as benzo[a]pyrene (BaP), which is a well-known genotoxic and carcinogenic compound to humans, capable of activating AP-1 transcription factor family genes through the Aryl Hydrocarbon Receptor (AhR). Because effects of BaP include metalloprotease 9 (MMP-9) activation, cell invasion, and other pathways related to carcinogenesis, we aimed to demonstrate that PM10 (10 µg/cm2) exposure induces the activation of AP-1 family members as well as cell invasion in lung epithelial cells, through AhR pathway. METHODS AND RESULTS: The role of the AhR gene in cells exposed to PM10 (10 µg/cm2) and BaP (1µM) for 48 h was evaluated using AhR-targeted interference siRNA. Then, the AP-1 family members (c-Jun, Jun B, Jun D, Fos B, C-Fos, and Fra-1), the levels/activity of MMP-9, and cell invasion were analyzed. We found that PM10 increased AhR levels and promoted its nuclear localization in A549 treated cells. Also, PM10 and BaP deregulated the activity of AP-1 family members. Moreover, PM10 upregulated the secretion and activity of MMP-9 through AhR, while BaP had no effect. Finally, we found that cell invasion in A549 cells exposed to PM10 and BaP is modulated by AhR. CONCLUSION: Our results demonstrated that PM10 exposure induces upregulation of the c-Jun, Jun B, and Fra-1 activity, the expression/activity of MMP-9, and the cell invasion in lung epithelial cells, effects mediated through the AhR. Also, the Fos B and C-Fos activity were downregulated. In addition, the effects induced by PM10 exposure were like those induced by BaP, which highlights the potentially toxic effects of the PM10 mixture in lung epithelial cells.


Asunto(s)
Material Particulado , Factor de Transcripción AP-1 , Humanos , Factor de Transcripción AP-1/genética , Células A549 , Material Particulado/toxicidad , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Pulmón/metabolismo , Células Epiteliales/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675297

RESUMEN

In cells, oxidative stress is an imbalance between the production/accumulation of oxidants and the ability of the antioxidant system to detoxify these reactive products. Reactive oxygen species (ROS), cause multiple cellular damages through their interaction with biomolecules such as lipids, proteins, and DNA. Genotoxic damage caused by oxidative stress has become relevant since it can lead to mutation and play a central role in malignant transformation. The evidence describes chronic oxidative stress as an important factor implicated in all stages of the multistep carcinogenic process: initiation, promotion, and progression. In recent years, ambient air pollution by particulate matter (PM) has been cataloged as a cancer risk factor, increasing the incidence of different types of tumors. Epidemiological and toxicological evidence shows how PM-induced oxidative stress could mediate multiple events oriented to carcinogenesis, such as proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, and activation of invasion/metastasis pathways. In this review, we summarize the findings regarding the involvement of oxidative and genotoxic mechanisms generated by PM in malignant cell transformation. We also discuss the importance of new approaches oriented to studying the development of tumors associated with PM with more accuracy, pursuing the goal of weighing the impact of oxidative stress and genotoxicity as one of the main mechanisms associated with its carcinogenic potential.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Humanos , Material Particulado/toxicidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/inducido químicamente , Carcinógenos , Daño del ADN , Contaminantes Atmosféricos/toxicidad
4.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674608

RESUMEN

Bladder cancer (BC) is the most common neoplasm of the urinary tract, which originates in the epithelium that covers the inner surface of the bladder. The molecular BC profile has led to the development of different classifications of non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). However, the genomic BC landscape profile of the Mexican population, including NMIBC and MIBC, is unknown. In this study, we aimed to identify somatic single nucleotide variants (SNVs) and copy number variations (CNVs) in Mexican patients with BC and their associations with clinical and pathological characteristics. We retrospectively evaluated 37 patients treated between 2012 and 2021 at the National Cancer Institute-Mexico (INCan). DNA samples were obtained from paraffin-embedded tumor tissues and exome sequenced. Strelka2 and Lancet packages were used to identify SNVs and insertions or deletions. FACETS was used to determine CNVs. We found a high frequency of mutations in TP53 and KMT2D, gains in 11q15.5 and 19p13.11-q12, and losses in 7q11.23. STAG2 mutations and 1q11.23 deletions were also associated with NMIBC and low histologic grade.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas de Unión al ADN , Proteínas de Neoplasias , Neoplasias de la Vejiga Urinaria , Humanos , México , Mutación , Invasividad Neoplásica , Estudios Retrospectivos , Neoplasias de la Vejiga Urinaria/patología , Proteínas de Unión al ADN/genética , Proteínas de Neoplasias/genética
5.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768437

RESUMEN

In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.


Asunto(s)
Neoplasias Colorrectales , Estudiantes , Humanos , México , Estudios Interdisciplinarios , Terapias en Investigación , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/terapia
6.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216341

RESUMEN

Airborne particulate matter with a diameter size of ≤10 µm (PM10) is a carcinogen that contains polycyclic aromatic hydrocarbons (PAH), which form PAH-DNA adducts. However, the way in which these adducts are managed by DNA repair pathways in cells exposed to PM10 has been partially described. We evaluated the effect of PM10 on nucleotide excision repair (NER) activity and on the levels of different proteins of this pathway that eliminate bulky DNA adducts. Our results showed that human lung epithelial cells (A549) exposed to 10 µg/cm2 of PM10 exhibited PAH-DNA adducts as well as an increase in RAD23 and XPD protein levels (first responders in NER). In addition, PM10 increased the levels of H4K20me2, a recruitment signal for XPA. However, we observed a decrease in total and phosphorylated XPA (Ser196) and an increase in phosphatase WIP1, aside from the absence of XPA-RPA complex, which participates in DNA-damage removal. Additionally, an NER activity assay demonstrated inhibition of the NER functionality in cells exposed to PM10, indicating that XPA alterations led to deficiencies in DNA repair. These results demonstrate that PM10 exposure induces an accumulation of DNA damage that is associated with NER inhibition, highlighting the role of PM10 as an important contributor to lung cancer.


Asunto(s)
Reparación del ADN/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Pulmón/efectos de los fármacos , Material Particulado/efectos adversos , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Células A549 , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232418

RESUMEN

The Hispanic population, compared with other ethnic groups, presents a more aggressive gastric cancer phenotype with higher frequency of diffuse-type gastric adenocarcinoma (GA); this could be related to the mutational landscape of GA in these patients. Using whole-exome sequencing, we sought to present the mutational landscape of GA from 50 Mexican patients who were treated at The Instituto Nacional de Cancerología from 2019 to 2020. We performed a comprehensive statistical analysis to explore the relationship of the genomic variants and clinical data such as tumor histology and presence of signet-ring cell, H. pylori, and EBV. We describe a potentially different mutational landscape between diffuse and intestinal GA in Mexican patients. Patients with intestinal-type GA tended to present a higher frequency of NOTCH1 mutations, copy number gains in cytobands 13.14, 10q23.33, and 12q25.1, and copy number losses in cytobands 7p12, 14q24.2, and 11q13.1; whereas patients with diffuse-type GA tended to present a high frequency of CDH1 mutations and CNV gains in cytobands 20q13.33 and 22q11.21. This is the first description of a mutational landscape of GA in Mexican patients to better understand tumorigenesis in Hispanic patients and lay the groundwork for discovering potential biomarkers and therapeutic targets.


Asunto(s)
Adenocarcinoma , Helicobacter pylori , Neoplasias Gástricas , Adenocarcinoma/genética , Antígenos CD/genética , Cadherinas/genética , Helicobacter pylori/genética , Humanos , Mutación , Neoplasias Gástricas/patología , Secuenciación del Exoma
8.
Breast Cancer Res Treat ; 188(2): 525-533, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33683522

RESUMEN

PURPOSE: Increasingly epidemiological evidence supports that environmental factors are associated with breast cancer (BC) outcomes after a BC diagnosis. Although evidence suggests that air pollution exposure is associated with higher mortality in women with BC, studies investigating potential mechanisms have been lacking. METHODS: We evaluated women with BC (N = 151) attended at the National Cancer Institute-Mexico from 2012 to 2015. We calculated 1-year average exposures to particulate matter < 2.5 µm (PM2.5) at home address before diagnosis. We used linear and logistic regression models to determine the associations between PM2.5 exposure and BC aggressiveness (tumor size, molecular phenotype). RESULTS: Average annual PM2.5 exposure of this population was 23.0 µg/m3 [standard deviation (SD)]: 1.90 µg/m3]. PM2.5 levels were positively correlated with tumor size at diagnosis (r = 0.22; p = 0.007). Multivariable linear models had a similar inference [risk ratio (RR): 1.32; 95% confidence interval (95% CI): 1.04, 1.674]. We did not observe differences in this association by age or menopause status. Further, women with triple-negative BC (TNBC) had significantly higher PM2.5 levels compared with other phenotypes (p = 0.015). Multivariable-adjusted logistic regression models assessing the association between PM2.5 and tumor size had a similar inference (RR 1.41; 95% CI 1.05, 1.89) overall for all ages and also for women who were ≤ 50 years old at diagnosis (RR 1.63; 95% CI 1.036, 2.57). CONCLUSIONS: Our findings suggest a significant association between long-term PM2.5 exposure and BC aggressiveness based on tumor size and phenotype, as well as a worse outcome.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias de la Mama , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , México , Persona de Mediana Edad , Material Particulado/efectos adversos , Material Particulado/análisis
9.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884446

RESUMEN

Air pollution presents a major environmental problem, inducing harmful effects on human health. Particulate matter of 10 µm or less in diameter (PM10) is considered an important risk factor in lung carcinogenesis. Epithelial-mesenchymal transition (EMT) is a regulatory program capable of inducing invasion and metastasis in cancer. In this study, we demonstrated that PM10 treatment induced phosphorylation of SMAD2/3 and upregulation of SMAD4. We also reported that PM10 increased the expression and protein levels of TGFB1 (TGF-ß), as well as EMT markers SNAI1 (Snail), SNAI2 (Slug), ZEB1 (ZEB1), CDH2 (N-cadherin), ACTA2 (α-SMA), and VIM (vimentin) in the lung A549 cell line. Cell exposed to PM10 also showed a decrease in the expression of CDH1 (E-cadherin). We also demonstrated that expression levels of these EMT markers were reduced when cells are transfected with small interfering RNAs (siRNAs) against TGFB1. Interestingly, phosphorylation of SMAD2/3 and upregulation of SMAD induced by PM10 were not affected by transfection of TGFB1 siRNAs. Finally, cells treated with PM10 exhibited an increase in the capacity of invasiveness because of EMT induction. Our results provide new evidence regarding the effect of PM10 in EMT and the acquisition of an invasive phenotype, a hallmark necessary for lung cancer progression.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Material Particulado/efectos adversos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Células A549 , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Modelos Biológicos , Invasividad Neoplásica , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Regulación hacia Arriba
10.
Anticancer Drugs ; 31(3): 251-259, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31764012

RESUMEN

The objective of this study was to analyze the antitumor activity of a hydrogel loaded with lipophilic bismuth nanoparticles on human cervical, prostate, and colon cancer cell lines. The effect of lipophilic bismuth nanoparticles on the viability of cancer cell lines (HeLa, DU145, and HCT-116) and non-cancer lung fibroblasts (HLF; LL 47[MaDo]) was determined with the MTT cell viability assay and compared with known antineoplastic drugs. The biocompatibility at an organismal level was verified in a murine model by histological examination. A lipophilic bismuth nanoparticle hydrogel at 50 µM time-dependently inhibited the growth of the three cancer cell lines, in a time-dependent way. A 1-hour exposure to 250 µM lipophilic bismuth nanoparticle hydrogel, inhibited the growth of the three cancer cell lines. The in-vitro efficacy of lipophilic bismuth nanoparticle was similar to the one of docetaxel and cisplatin, but without inhibiting the growth of non-cancer control cells. Histology confirmed the biocompatibility of lipophilic bismuth nanoparticles as there were no signs of cytotoxicity or tissue damage in any of the evaluated organs (kidney, liver, brain, cerebellum, heart, and jejunum). In conclusion, a lipophilic bismuth nanoparticle hydrogel is an innovative, low-cost alternative for the topical treatment of cervicouterine, prostate, and colon human cancers.


Asunto(s)
Antineoplásicos/farmacología , Bismuto/farmacología , Neoplasias del Colon/tratamiento farmacológico , Nanopartículas/química , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Bismuto/química , Línea Celular Tumoral , Neoplasias del Colon/patología , Femenino , Células HeLa , Humanos , Hidrogeles/química , Masculino , Ratones , Ratones Endogámicos BALB C , Neoplasias de la Próstata/patología , Neoplasias del Cuello Uterino/patología
11.
Int J Mol Sci ; 21(2)2020 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31940823

RESUMEN

Outdoor particulate matter (PM10) exposure is carcinogenic to humans. The cellular mechanism by which PM10 is associated specifically with lung cancer includes oxidative stress and damage to proteins, lipids, and DNA in the absence of apoptosis, suggesting that PM10 induces cellular survival. We aimed to evaluate the PI3K/AKT/FoxO3a pathway as a mechanism of cell survival in lung epithelial A549 cells exposed to PM10 that were subsequently challenged with hydrogen peroxide (H2O2). Our results showed that pre-exposure to PM10 followed by H2O2, as a second oxidant stimulus increased the phosphorylation rate of pAKTSer473, pAKTThr308, and pFoxO3aSer253 2.5-fold, 1.8-fold, and 1.2-fold, respectively. Levels of catalase and p27kip1, which are targets of the PIK3/AKT/FoxO3a pathway, decreased 38.1% and 62.7%, respectively. None of these changes had an influence on apoptosis; however, the inhibition of PI3K using the LY294002 compound revealed that the PI3K/AKT/FoxO3a pathway was involved in apoptosis evasion. We conclude that nontoxic PM10 exposure predisposes lung epithelial cell cultures to evade apoptosis through the PI3K/AKT/FoxO3a pathway when cells are treated with a second oxidant stimulus.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Apoptosis , Estrés Oxidativo , Material Particulado/farmacología , Transducción de Señal , Células A549 , Células Epiteliales Alveolares/metabolismo , Proteína Forkhead Box O3/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo
12.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878205

RESUMEN

Air pollution has been recognized as a global health problem, causing around 7 million deaths worldwide and representing one of the highest environmental crises that we are now facing. Close to 30% of new lung cancer cases are associated with air pollution, and the impact is more evident in major cities. In this review, we summarize and discuss the evidence regarding the effect of particulate matter (PM) and its impact in carcinogenesis, considering the "hallmarks of cancer" described by Hanahan and Weinberg in 2000 and 2011 as a guide to describing the findings that support the impact of particulate matter during the cancer continuum.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Material Particulado/toxicidad , Contaminación del Aire/efectos adversos , Animales , Carcinogénesis/inducido químicamente , Humanos , Neoplasias/epidemiología , Neoplasias/etiología
13.
Cell Mol Biol (Noisy-le-grand) ; 63(12): 11-13, 2017 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-29307346

RESUMEN

Prostate cancer (PC) is the main cause of cancer mortality in men worldwide. Therefore, novel treatments for PC are needed. Ether à-go-go-1 (Eag1) potassium channels display oncogenic properties, and have been suggested as early tumor markers and therapeutic targets for different cancers. These channels are overexpressed in many human tumors including PC. Astemizole targets several molecules involved in cancer including Eag1 channels, histamine receptors and ABC transporters. Here we studied Eag1 mRNA expression and protein levels in the non-tumorigenic and non-invasive human prostate RWPE-1 cell line, and in the tumorigenic and highly invasive human prostate WPE1-NB26 cell lines. The effect of astemizole on cell proliferation and apoptosis was also studied. The human prostate cell lines RWPE-1 and WPE1-NB26 were cultured following the provider´s instructions. Eag1 mRNA expression and protein levels were studied by real time RT-PCR and immunocytochemistry, respectively. Cell proliferation and apoptosis were studied by a fluorescence AlamarBlue®  assay and flow cytometry, respectively. No difference in Eag1 mRNA expression was observed between the cell lines. However, high Eag1 protein levels were observed in the invasive WPE1-NB26 cells, in contrast to the weak protein expression in RWPE-1 cells. Accordingly, astemizole decreased cell proliferation at nanomolar concentrations only in the invasive WPE1-NB26 cells.  Our results suggest that astemizole may have clinical relevance for prostate cancer treatment in patients with high Eag1 protein levels.


Asunto(s)
Astemizol/farmacología , Proliferación Celular/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Inmunohistoquímica , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Environ Res ; 136: 424-34, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25460664

RESUMEN

Titanium dioxide nanoparticles (TiO2 NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO2 NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO2-B) using TiO2 spheres (TiO2-SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm(2)) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO2-B effect on agglomerates size, cell size and granularity than TiO2-SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO2-SP and TiO2-B, respectively; TiO2-SP and TiO2-B induced 23% and 70% cell size decrease, respectively, whilst TiO2-SP and TiO2-B induced 7 and 14-fold of granularity increase. NOx production was down-regulated (31%) by TiO2-SP and up-regulated (70%) by TiO2-B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO2-SP exposed cells while TiO2-B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO2-B had higher proliferative potential than TiO2-SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome.


Asunto(s)
Membrana Corioalantoides/efectos de los fármacos , Inflamación/inducido químicamente , Pulmón/efectos de los fármacos , Nanopartículas del Metal , Titanio/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Pulmón/citología , Pulmón/metabolismo , Microscopía Electrónica , Óxido Nítrico/metabolismo
15.
Food Chem Toxicol ; : 114912, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39121895

RESUMEN

Food grade titanium dioxide E171 has been used in products such as confectionery, doughs and flours to enhance organoleptic properties. The European Union has warned about adverse effects on humans due to oral consumption. After oral exposure, E171 reaches the bloodstream which raises the concern about effects on blood cells such as monocytes. One of the main functions of these cells is the differentiation of macrophages leading to the phagocytosis of foreign particles. The aim of this study was to evaluate the effect of E171 exposure on the phagocytic capacity and differentiation process of monocytes (THP-1) into macrophages. Physicochemical E171 properties were evaluated, and THP-1 monocytes were exposed to 4, 40 and 200 µg/ml. Cell viability, uptake capacity, cytokine release, the differentiation process, cytoskeletal arrangement and E171 internalization were assayed. Results showed that E171 particles had an amorphous shape with a mean of hydrodynamic size of ∼46 nm in cell culture media. Cell viability decreased until the 9th day of exposure, while the uptake capacity decreased up to 62% in a concentration dependent manner in monocytes. Additionally, the E171 exposure increased the proinflammatory cytokines release and decreased the cell differentiation by a 61% in macrophages. E171 induced changes in cytoskeletal arrangement and some of the E171 particles were located inside the nuclei. We conclude that E171 exposure in THP-1 monocytes induced an inflammatory response, impaired the phagocytic capacity, and interfered with cell differentiation from monocytes to macrophages.

16.
Sci Total Environ ; 926: 171933, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522535

RESUMEN

Air pollution is a worldwide environmental problem with an impact on human health. Particulate matter of ten micrometers or less aerodynamic diameter (PM10) as well as its fine fraction (PM2.5) is related to multiple pulmonary diseases. The impact of air pollution in Mexico City, and importantly, particulate matter has been studied and considered as a risk factor for two decades ago. Previous studies have reported the composition of Mexico City particulate matter, as well as the biological effects induced by this material. However, material collected and used in previous studies is a limited resource, and sampling and particle recovery techniques have been improved. In this study, we describe the methods used in our laboratory for Mexico City airborne particulate matter PM10 and PM2.5 sampling, considering the years 2017, 2018 and 2019. We also analyzed the PM10 and PM2.5 samples obtained to determine their composition. Finally, we exposed lung cell line cultures to PM10 and PM2.5 to evaluate the biological effect of the material in terms of cell viability, cell death, inflammatory response, and cytogenetic alterations. Our results showed that PM10 composition includes inorganic, organic and biological compounds, while PM2.5 is a mixture of more enriched organic compounds. PM10 and PM2.5 treatment in lung cells does not significantly impact cell viability/cell death. However, PM10 and PM2.5 increase the secretion levels of IL-6. Moreover, PM10 as well as PM2.5 induce cytogenetic alterations, such as micronuclei, anaphase bridges, trinucleated cells and apoptotic cells in lung cells. Our results update the evidence of the composition and biological effects of Mexico City particulate matter and provide us a reliable basis for future approaches.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Material Particulado/toxicidad , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , México , Contaminación del Aire/análisis , Ciudades , Tamaño de la Partícula
17.
J Appl Biomater Funct Mater ; 22: 22808000241236590, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444166

RESUMEN

OBJECTIVE: To evaluate the antitumor and antimicrobial properties of an alginate-based membrane (ABM) loaded with bismuth lipophilic nanoparticles (BisBAL NPs) and cetylpyridinium chloride (CPC) on clinically isolated bacteria and a pancreatic cancer cell line. MATERIAL AND METHODS: The BisBAL NP-CPC ABM was characterized using optical and scanning electron microscopy (SEM). The antimicrobial potential was measured using the disk-diffusion assay, and antibiofilm activity was determined through the live/dead assay and fluorescence microscopy. The antitumor activity was analyzed on the pancreatic cell line (Panc 03.27) using the MTT assay and live/dead assay with fluorescence microscopy. RESULTS: After a 24-h exposure (37°C, aerobic conditions), 5 µM BisBAL NP reduced the growth of K. pneumoniae by 77.9%, while 2.5 µM BisBAL NP inhibited the growth of Salmonella, E. faecalis and E. faecium by 82.9%, 82.6%, and 78%, respectively (p < 0.0001). The BisBAL NPs-CPC ABM (at a ratio of 10:1; 500 and 50 µM, respectively) inhibited the growth of all isolated bacteria, producing inhibition halos of 9.5, 11.2, 7, and 10.3 mm for K. pneumoniae, Salmonella, E. faecalis, and E. faecium, respectively, in contrast to the 6.5, 9.5, 8.5, and 9.8 mm obtained with 100 µM ceftriaxone (p < 0.0001). The BisBAL NPs-CPC ABM also reduced bacterial biofilms, with 81.4%, 74.5%, 97.1%, and 79.5% inhibition for K. pneumoniae, E. faecium, E. faecalis, and Salmonella, respectively. Furthermore, the BisBAL NPs-CPC ABM decreased Panc 03.27 cell growth by 76%, compared to 18% for drug-free ABM. GEM-ABM reduced tumoral growth by 73%. The live/dead assay confirmed that BisBAL NPs-CPC-ABM and GEM-ABM were cytotoxic for the turmoral Panc 03.27 cells. CONCLUSION: An alginate-based membrane loaded with BisBAL NP and CPC exhibits dual antimicrobial and antitumoral efficacy. Therefore, it could be applied in cancer treatment and to diminish the occurrence of surgical site infections.


Asunto(s)
Antiinfecciosos , Bismuto , Dimercaprol/análogos & derivados , Compuestos Organometálicos , Cetilpiridinio/farmacología , Antiinfecciosos/farmacología , Alginatos/farmacología , Klebsiella pneumoniae
18.
Food Funct ; 15(8): 4586-4602, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38590223

RESUMEN

Hepatocellular carcinoma (HCC) is a tumor with minimal chance of cure due to underlying liver diseases, late diagnosis, and inefficient treatments. Thus, HCC treatment warrants the development of additional strategies. Lactoferrin (Lf) is a mammalian multifunctional iron-binding glycoprotein of the innate immune response and can be found as either a native low iron form (native-Lf) or a high iron form (holo-Lf). Bovine Lf (bLf), which shares many functions with human Lf (hLf), is safe for humans and has several anticancer activities, including chemotherapy boost in cancer. We found endogenous hLf is downregulated in HCC tumors compared with normal liver, and decreased hLf levels in HCC tumors are associated with shorter survival of HCC patients. However, the chemoprotective effect of 100% iron saturated holo-bLf on experimental hepatocarcinogenesis has not yet been determined. We aimed to evaluate the chemopreventive effects of holo-bLf in different HCC models. Remarkably, a single dose (200 mg kg-1) of holo-bLf was effective in preventing early carcinogenic events in a diethylnitrosamine induced HCC in vivo model, such as necrosis, ROS production, and the surge of facultative liver stem cells, and eventually, holo-bLf reduced the number of preneoplastic lesions. For an established HCC model, holo-bLf treatment significantly reduced HepG2 tumor burden in xenotransplanted mice. Finally, holo-bLf in combination with sorafenib, the advanced HCC first-line treatment, synergistically decreased HepG2 viability by arresting cells in the G0/G1 phase of the cell cycle. Our findings provide the first evidence suggesting that holo-bLf has the potential to prevent HCC or to be used in combination with treatments for established HCC.


Asunto(s)
Carcinoma Hepatocelular , Hierro , Lactoferrina , Neoplasias Hepáticas , Lactoferrina/farmacología , Lactoferrina/administración & dosificación , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/prevención & control , Neoplasias Hepáticas/tratamiento farmacológico , Bovinos , Hierro/metabolismo , Humanos , Ratones , Masculino
19.
Biochem Pharmacol ; : 116209, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38621424

RESUMEN

The worst-case scenario related to alcoholic liver disease (ALD) arises after a long period of exposure to the harmful effect of alcohol consumption along with other hepatotoxics. ALD encompasses a broad spectrum of liver-associated disorders, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Based on the chronic administration of different hepatotoxics, including ethanol, sucrose, lipopolysaccharide, and low doses of diethylnitrosamine over a short period, here we aimed to develop a multiple hepatotoxic (MHT)-ALD model in the mouse that recapitulates the human ALD-associated disorders. We demonstrated that the MHT-ALD model induces ADH1A and NXN, an ethanol metabolizer and a redox-sensor enzyme, respectively; promotes steatosis associated with the induction of the lipid droplet forming FSP27, inflammation identified by the infiltration of hepatic neutrophils-positive to LY-6G marker, and the increase of MYD88 level, a protein involved in inflammatory response; and stimulates the early appearance of cellular senescence identified by the senescence markers SA-ß-gal activity and p-H2A.XSer139. It also induces fibrosis associated with increased desmin, a marker of hepatic stellate cells whose activation leads to the deposition of collagen fibers, accompanied by cell death and compensatory proliferation revealed by increased CASP3-mediated apoptosis, and KI67- and PCNA-proliferation markers, respectively. It also induces histopathological traits of malignancy and the level of the HCC marker, GSTP1. In conclusion, we provide a useful model for exploring the chronological ALD-associated alterations and stages, and addressing therapeutic approaches.

20.
Toxicol Pathol ; 41(4): 628-38, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23104767

RESUMEN

Particulate matter, with a mean aerodynamic diameter of ≤10 µm (PM10), exposure is considered as a risk factor for cardiovascular and respiratory diseases. The mechanism of cell damage induced by PM10 exposure is related to mitochondrial alterations. The aim of this work was to investigate the detailed alterations induced by PM10 on mitochondrial function. Since lung tissue is one of the most important targets of PM10 inhalation, isolated mitochondria from lung rat tissue were exposed to PM10 and structural alterations were analyzed by transmission electron microscopy. Mitochondrial function was evaluated by respiratory control index (RCI), membrane potential, adenosine triphosphate (ATP) synthesis, and activity of respiratory chain. Results showed that exposure to PM10 in isolated mitochondria from lung tissue caused enlarged intermembrane spaces and shape alterations, disruption of cristae, and the decrease in dense granules. Oxygraphic traces showed a concentration-dependent decrease in oxygen consumption and RCI. In addition, mitochondrial membrane potential, ATP synthesis, and activity of complexes II and IV showed an increase and decrease, respectively, after PM10 exposure. PM10 exposure induced disruption in structure and function in isolated mitochondria from lung rat tissue.


Asunto(s)
Transporte de Electrón/efectos de los fármacos , Exposición por Inhalación/análisis , Pulmón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Material Particulado/toxicidad , Contaminantes Atmosféricos/toxicidad , Análisis de Varianza , Animales , Complejo IV de Transporte de Electrones/metabolismo , Pulmón/citología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Electrónica de Transmisión , Mitocondrias/patología , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar , Succinato Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA