Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nat Prod ; 84(4): 1261-1270, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33844528

RESUMEN

The coronaviruses disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2) has become a major health problem, affecting more than 50 million people with over one million deaths globally. Effective antivirals are still lacking. Here, we optimized a high-content imaging platform and the plaque assay for viral output study using the legitimate model of human lung epithelial cells, Calu-3, to determine the anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component, andrographolide. SARS-CoV-2 at 25TCID50 was able to reach the maximal infectivity of 95% in Calu-3 cells. Postinfection treatment of A. paniculata and andrographolide in SARS-CoV-2-infected Calu-3 cells significantly inhibited the production of infectious virions with an IC50 of 0.036 µg/mL and 0.034 µM, respectively, as determined by the plaque assay. The cytotoxicity profile developed over the cell line representatives of major organs, including liver (HepG2 and imHC), kidney (HK-2), intestine (Caco-2), lung (Calu-3), and brain (SH-SY5Y), showed a CC50 of >100 µg/mL for A. paniculata extract and 13.2-81.5 µM for andrographolide, respectively, corresponding to a selectivity index of over 380. In conclusion, this study provided experimental evidence in favor of A. paniculata and andrographolide for further development as a monotherapy or in combination with other effective drugs against SARS-CoV-2 infection.


Asunto(s)
Andrographis , Diterpenos/farmacología , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Epiteliales/virología , Humanos , Hidroxicloroquina/farmacología , Pulmón/virología
2.
Int J Med Sci ; 16(4): 602-606, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31171912

RESUMEN

Hyperpigmentation is a type of pigmentary disorder induced by overexpression of melanin content activated severe esthetic problems as melasma, freckle, ephelides, lentigo and other forms on human skin. Several whitening agents have restricted use because of their side effects or stability such as kojic acid, ascorbic acid and hydroquinone can act as cytotoxic substance which associated to dermatitis and skin cancer. To find for the safe substance, this study aimed to find for the ability of several components in Sucrier banana peel (SBP) extracts to inhibit melanogenesis process through p38 signaling pathway in B16F10 mouse melanoma cells. Tyrosinase activity and the cellular melanin content were dose dependent manner decreasing after SBP treatment. Furthermore, SBP decreased the expression of melanogenesis relate protein as microphthalmia-associated transcription factor (MITF) and tyrosinase protein after 24 hours incubation with α-melanocyte stimulating hormones (MSH) stimulating. The findings demonstrated that SBP contained an effective agent for hyperpigmentation inhibitor through p38 signaling pathways without any effect to ERK pathway, and subsequent down-regulate MITF expression and tyrosinase enzyme family production.


Asunto(s)
Hiperpigmentación/tratamiento farmacológico , Melaninas/biosíntesis , Melanoma Experimental/tratamiento farmacológico , Musa/química , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melaninas/antagonistas & inhibidores , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Monofenol Monooxigenasa/genética , Extractos Vegetales/química , Extractos Vegetales/farmacología , alfa-MSH/farmacología
3.
Malar J ; 17(1): 50, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370800

RESUMEN

BACKGROUND: Eradication of malaria is difficult because of the ability of hypnozoite, the dormant liver-stage form of Plasmodium vivax, to cause relapse in patients. Research efforts to better understand the biology of P. vivax hypnozoite and design relapse prevention strategies have been hampered by the lack of a robust and reliable model for in vitro culture of liver-stage parasites. Although the HC-04 hepatoma cell line is used for culturing liver-stage forms of Plasmodium, these cells proliferate unrestrictedly and detach from the culture dish after several days, which limits their usefulness in a long-term hypnozoite assay. METHODS: A novel immortalized hepatocyte-like cell line (imHC) was evaluated for the capability to support P. vivax sporozoite infection. First, expression of basic hepatocyte markers and all major malaria sporozoite-associated host receptors in imHC was investigated. Next, in vitro hepatocyte infectivity and intracellular development of sporozoites in imHC were determined using an indirect immunofluorescence assay. Cytochrome P450 isotype activity was also measured to determine the ability of imHC to metabolize drugs. Finally, the anti-liver-stage agent primaquine was used to test this model for a drug sensitivity assay. RESULTS: imHCs maintained major hepatic functions and expressed the essential factors CD81, SR-BI and EphA2, which are required for host entry and development of the parasite in the liver. imHCs could be maintained long-term in a monolayer without overgrowth and thus served as a good, supportive substrate for the invasion and growth of P. vivax liver stages, including hypnozoites. The observed high drug metabolism activity and potent responses in liver-stage parasites to primaquine highlight the potential use of this imHC model for antimalarial drug screening. CONCLUSIONS: imHCs, which maintain a hepatocyte phenotype and drug-metabolizing enzyme expression, constitute an alternative host for in vitro Plasmodium liver-stage studies, particularly those addressing the biology of P. vivax hypnozoite. They potentially offer a novel, robust model for screening drugs against liver-stage parasites.


Asunto(s)
Línea Celular , Técnicas de Cultivo/métodos , Hepatocitos/parasitología , Plasmodium vivax , Esporozoítos , Animales , Investigación Biomédica/métodos , Humanos , Hígado/citología , Hígado/parasitología , Parasitología/métodos , Plasmodium vivax/patogenicidad , Plasmodium vivax/fisiología , Esporozoítos/patogenicidad , Esporozoítos/fisiología
4.
Virol J ; 13: 59, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27044429

RESUMEN

BACKGROUND: Hepatitis C virus (HCV) could induce chronic liver diseases and hepatocellular carcinoma in human. The use of primary human hepatocyte as a viral host is restrained with the scarcity of tissue supply. A culture model restricted to HCV genotype 2a (JFH-1) has been established using Huh7-derived hepatocyte. Other genotypes including the wild-type virus could not propagate in Huh7, Huh7.5 and Huh7.5.1 cells. METHODS: Functional hepatocyte-like cells (HLCs) were developed from normal human iPS cells as a host for HCV infection. Mature HLCs were identified for selective hepatocyte markers, CYP450s, HCV associated receptors and HCV essential host factors. HLCs were either transfected with JFH-1 HCV RNA or infected with HCV particles derived from patient serum. The enhancing effect of α-tocopherol and the inhibitory effects of INF-α, ribavirin and sofosbuvir to HCV infection were studied. The HCV viral load and HCV RNA were assayed for the infection efficiency. RESULTS: The fully-developed HLCs expressed phase I, II, and III drug-metabolizing enzymes, HCV associated receptors (claudin-1, occludin, CD81, ApoE, ApoB, LDL-R) and HCV essential host factors (miR-122 and SEC14L2) comparable to the primary human hepatocyte. SEC14L2, an α-tocopherol transfer protein, was expressed in HLCs, but not in Huh7 cell, had been implicated in effective HCVser infection. The HLCs permitted not only the replication of HCV RNA, but also the production of HCV particles (HCVcc) released to the culture media. HLCs drove higher propagation of HCVcc derived from JFH-1 than did the classical host Huh7 cells. HLCs infected with either JFH-1 or wild-type HCV expressed HCV core antigen, NS5A, NS5B, NS3 and HCV negative-stand RNA. HLCs allowed entire HCV life cycle derived from either JFH-1, HCVcc or wild-type HCV (genotype 1a, 1b, 3a, 3b, 6f and 6n). Further increasing the HCVser infection in HLCs was achieved by incubating cell with α-tocopherol. The supernatant from infected HLCs could infect both naïve HLC and Huh7 cell. Treating infected HLC with INF-α and ribavirin decreased HCV RNA in both the cellular fraction and the culture medium. The HLCs reacted to HCVcc or wild-type HCV infection by upregulating TNF-α, IL-28B and IL-29. CONCLUSIONS: This robust cell culture model for serum-derived HCV using HLCs as host cells provides a remarkable system for investigating HCV life cycle, HCV-associated hepatocellular carcinoma development and the screening for new anti HCV drugs.


Asunto(s)
Diferenciación Celular , Hepacivirus/crecimiento & desarrollo , Hepatocitos/virología , Interacciones Huésped-Patógeno , Células Madre Pluripotentes Inducidas/virología , Cultivo de Virus/métodos , Adulto , Hepatitis C/patología , Hepatitis C/virología , Humanos , Modelos Biológicos
5.
BMC Complement Altern Med ; 16(1): 489, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27899095

RESUMEN

BACKGROUND: Ayurved Siriraj Wattana recipe (AVS073), has been prescribed as tonic, to increase appetite, and for pain relief. It also exhibits antioxidant, anti-inflammatory, immunomodulating and anti-cancer activities. However, the immunomodulatory effects on antigen-presenting cells and effector T cells remained elusive. We thus aimed to study the effects of AVS073 on differentiation, maturation, functions and proportions of CIK cells and monocyte-derived DCs. METHODS: CIK cells and monocyte-derived DCs were treated with AVS073, followed by the assessment of T-helper (Th) phenotypes using real-time RT-PCR and flow cytometry. RESULTS: AVS073 promoted Th1 phenotype in CD3+CD56+ subset of CIK cells through increasing STAT4, T-bet, and interferon-γ. AVS073 inhibited Th2 phenotype through decreasing STAT6. AVS073 inhibited Treg phenotype through decreasing STAT5A, STAT5B and IDO. AVS073 promoted Th17 phenotype through increasing STAT3, RORC and IL-17. AVS073 treatment of mDCs resulted in increasing Th1-prone cytokine (IL-12) and Th17-prone cytokines (IL-6 and IL-23). CONCLUSIONS: AVS073 upregulated Th1 and Th17, but downregulated Th2 and Treg phenotypes within CD3+CD56+ cells. The treatment of mDCs drove Th1 and Th17-polarizations.


Asunto(s)
Células Asesinas Inducidas por Citocinas/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Preparaciones de Plantas/farmacología , Plantas Medicinales/química , Complejo CD3 , Antígeno CD56 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Humanos , Inmunofenotipificación , Subgrupos de Linfocitos T/efectos de los fármacos , Tailandia
6.
PLoS One ; 19(5): e0303265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739590

RESUMEN

More than 58 million individuals worldwide are inflicted with chronic HCV. The disease carries a high risk of end stage liver disease, i.e., cirrhosis and hepatocellular carcinoma. Although direct-acting antiviral agents (DAAs) have revolutionized therapy, the emergence of drug-resistant strains has become a growing concern. Conventional cellular models, Huh7 and its derivatives were very permissive to only HCVcc (JFH-1), but not HCV clinical isolates. The lack of suitable host cells had hindered comprehensive research on patient-derived HCV. Here, we established a novel hepatocyte model for HCV culture to host clinically pan-genotype HCV strains. The immortalized hepatocyte-like cell line (imHC) derived from human mesenchymal stem cell carries HCV receptors and essential host factors. The imHC outperformed Huh7 as a host for HCV (JFH-1) and sustained the entire HCV life cycle of pan-genotypic clinical isolates. We analyzed the alteration of host markers (i.e., hepatic markers, cellular innate immune response, and cell apoptosis) in response to HCV infection. The imHC model uncovered the underlying mechanisms governing the action of IFN-α and the activation of sofosbuvir. The insights from HCV-cell culture model hold promise for understanding disease pathogenesis and novel anti-HCV development.


Asunto(s)
Hepacivirus , Hepatocitos , Humanos , Hepatocitos/virología , Hepatocitos/patología , Hepacivirus/genética , Hepacivirus/fisiología , Antivirales/farmacología , Sofosbuvir/farmacología , Línea Celular , Replicación Viral , Interferón-alfa/farmacología , Hepatitis C/virología , Apoptosis , Células Madre Mesenquimatosas/virología , Células Madre Mesenquimatosas/metabolismo
7.
PLoS One ; 18(4): e0284708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37079526

RESUMEN

Hodgkin's lymphoma and anaplastic large cell lymphoma, especially relapsed or refractory diseases, could recently be cured by CD30-targeted immunotherapy. However, the CD30 antigen releases the soluble ectodomain of CD30, which might obscure the targeted therapy. Therefore, the membrane epitope of CD30 (mCD30), left on the cancer cells, might be a prospective target for lymphoma treatment. The discovery of novel mCD30 monoclonal antibodies (mAbs) using phage technology yielded 59 potential human single-chain variable fragments (HuscFvs). Ten candidate HuscFv clones have been selected based on various methods, i.e., direct PCR, ELISA and western blot assays, and nucleotide sequencing techniques. Fortunately, only one potential HuscFv clone, clone #A4, was determined by the prediction of HuscFv-peptide molecular docking and the binding affinity test using isothermal titration calorimetry. Finally, we proved that the HuscFv #A4, which had a binding affinity (Kd) of 421e-9 ± 2.76e-6 M, might be the novel mCD30 mAb. We generated chimeric antigen receptor-modified T lymphocytes using HuscFv #A4 as an antigen detection part (anti-mCD30-H4CART). The cytotoxicity assay of anti-mCD30-H4CART cells showed significant eradication of the CD30-expressing cell line, K562 (p = 0.0378). We found a novel mCD30 HuscFv using human phage technology. We systematically examined and proved that our HuscFv #A4 could specifically eradicate CD30-expressing cancers.


Asunto(s)
Bacteriófagos , Anticuerpos de Cadena Única , Humanos , Simulación del Acoplamiento Molecular , Anticuerpos Monoclonales/farmacología , Biblioteca de Péptidos , Antígeno Ki-1 , Inmunoterapia
8.
J Exp Pharmacol ; 15: 13-26, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36699694

RESUMEN

Background: The outbreak of COVID-19 has led to the suffering of people around the world, with an inaccessibility of specific and effective medication. Fingerroot extract, which showed in vitro anti-SARS-CoV-2 activity, could alleviate the deficiency of antivirals and reduce the burden of health systems. Aim of Study: In this study, we conducted an experiment in SARS-CoV-2-infected hamsters to determine the efficacy of fingerroot extract in vivo. Materials and Methods: The infected hamsters were orally administered with vehicle control, fingerroot extract 300 or 1000 mg/kg, or favipiravir 1000 mg/kg at 48 h post-infection for 7 consecutive days. The hamsters (n = 12 each group) were sacrificed at day 2, 4 and 8 post-infection to collect the plasma and lung tissues for analyses of viral output, lung histology and lung concentration of panduratin A. Results: All animals in treatment groups reported no death, while one hamster in the control group died on day 3 post-infection. All treatments significantly reduced lung pathophysiology and inflammatory mediators, PGE2 and IL-6, compared to the control group. High levels of panduratin A were found in both the plasma and lung of infected animals. Conclusion: Fingerroot extract was shown to be a potential of reducing lung inflammation and cytokines in hamsters. Further studies of the full pharmacokinetics and toxicity are required before entering into clinical development.

9.
J Vis Exp ; (183)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35635460

RESUMEN

Hepatitis B virus (HBV) infection has been considered a crucial risk factor for hepatocellular carcinoma. Current treatment can only lessen the viral load but not result in complete remission. An efficient hepatocyte model for HBV infection would offer a true-to-life viral life cycle that would be crucial for the screening of therapeutic agents. Most available anti-HBV agents target lifecycle stages post viral entry but not before viral entry. This protocol details the generation of a competent hepatocyte model capable of screening for therapeutic agents targeting pre-viral entry and post viral entry lifecycle stages. This includes the targeting of sodium taurocholate cotransporting polypeptide (NTCP) binding, cccDNA formation, transcription, and viral assembly based on imHC or HepaRG as host cells. Here, the HBV entry inhibition assay used curcumin to inhibit HBV binding and transporting functions via NTCP. The inhibitors were evaluated for binding affinity (KD) with NTCP using isothermal titration calorimetry (ITC)-a universal tool for HBV drug screening based on thermodynamic parameters.


Asunto(s)
Hepatitis B , Simportadores , Hepatitis B/tratamiento farmacológico , Virus de la Hepatitis B/fisiología , Hepatocitos/metabolismo , Humanos , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/uso terapéutico , Simportadores/genética , Simportadores/metabolismo , Simportadores/uso terapéutico
10.
J Med Case Rep ; 16(1): 298, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35922868

RESUMEN

BACKGROUND: The loss of limbal stem cells owing to either corneal burn or inflammation leads to the repopulation of opaque skin over the raw surface of the cornea. It has been proposed that reconstitution of oral mucosal stem cells over this raw surface will mimic the limbal stem cells and restore vision. The efficacy and safety of applying a sheet of cultivated oral mucosal cells as an autologous graft for corneal replacement were evaluated. CASE PRESENTATION: The study was conducted during 2014-2015 and involved a total of six patients, of whom three had suffered a chemical burn and three had Stevens-Johnson Syndrome (SJS). Oral mucosal tissue was dissected from each patient, seeded onto irradiated J2 fibroblast feeder cells for 14 days, and analyzed for quality and safety 1 day before being transplanted onto the cornea of the affected eyes. After transplantation, topical antibiotic and anti-inflammatory eye drops were instilled four times daily, and the patients wore contact lenses. Subjects were clinically followed for visual acuities and adverse effects at 2, 4, and 6 weeks, 3 and 6 months, and 1 year post-transplantation. Data were presented descriptively. Visual acuities in patients improved at 2 weeks post-surgery. However, two patients with SJS had corneal ulcer at 2 weeks postoperatively. At the 1-year postoperative examination, the eyes of two patients were in good condition with decreased vascularization and epithelial defect. CONCLUSIONS: Cultivated oral mucosal epithelial sheet transplantation in limbal stem cell deficiency had a favorable efficacy. In this study, patients with chemical burn had more clinical benefit than those with SJS. Trial registration ClinicalTrials.gov: NCT02415218. Registered retrospectively 4 Apr 2015 ( https://clinicaltrials.gov/ct2/show/NCT02415218 ).


Asunto(s)
Enfermedades de la Córnea , Trasplante de Células Madre , Quemaduras Químicas/metabolismo , Quemaduras Químicas/cirugía , Técnicas de Cultivo de Célula , Células Cultivadas , Enfermedades de la Córnea/cirugía , Células Epiteliales , Hospitales , Humanos , Mucosa Bucal , Estudios Retrospectivos , Células Madre , Trasplante Autólogo
11.
BMC Biotechnol ; 11: 89, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21961524

RESUMEN

BACKGROUND: The strenuous procurement of cultured human hepatocytes and their short lives have constrained the cell culture model of cytochrome P450 (CYP450) induction, xenobiotic biotransformation, and hepatotoxicity. The development of continuous non-tumorous cell line steadily containing hepatocyte phenotypes would substitute the primary hepatocytes for these studies. RESULTS: The hepatocyte-like cells have been developed from hTERT plus Bmi-1-immortalized human mesenchymal stem cells to substitute the primary hepatocytes. The hepatocyte-like cells had polygonal morphology and steadily produced albumin, glycogen, urea and UGT1A1 beyond 6 months while maintaining proliferative capacity. Although these hepatocyte-like cells had low basal expression of CYP450 isotypes, their expressions could be extensively up regulated to 80 folds upon the exposure to enzyme inducers. Their inducibility outperformed the classical HepG2 cells. CONCLUSION: The hepatocyte-like cells contained the markers of hepatocytes including CYP450 isotypes. The high inducibility of CYP450 transcripts could serve as a sensitive model for profiling xenobiotic-induced expression of CYP450.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Hepatocitos/enzimología , Células Madre Mesenquimatosas/enzimología , Xenobióticos/farmacología , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular Transformada , Sistema Enzimático del Citocromo P-450/genética , Inducción Enzimática/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucuronosiltransferasa/análisis , Hepatocitos/citología , Humanos , Células Madre Mesenquimatosas/citología , Regulación hacia Arriba , Xenobióticos/metabolismo
12.
Sci Rep ; 11(1): 19125, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580340

RESUMEN

Hepatitis B virus (HBV) has been implicated in hepatitis and hepatocellular carcinoma. Current agents (nucleos(t)ide analogs and interferons) could only attenuate HBV infection. A combination of agents targeting different stages of viral life cycle (e.g., entry, replication, and cccDNA stability) was expected to eradicate the infection. Curcumin (CCM) was investigated for inhibitory action toward HBV attachment and internalization. Immortalized hepatocyte-like cells (imHCs), HepaRG and non-hepatic cells served as host cells for binding study with CCM. CCM decreased viral load, HBeAg, HBcAg (infectivity), intracellular HBV DNA, and cccDNA levels. The CCM-induced suppression of HBV entry was directly correlated with the density of sodium-taurocholate co-transporting polypeptide (NTCP), a known host receptor for HBV entry. The site of action of CCM was confirmed using TCA uptake assay. The affinity between CCM and NTCP was measured using isothermal titration calorimetry (ITC). These results demonstrated that CCM interrupted HBV entry and would therefore suppress HBV re-infection.


Asunto(s)
Curcumina/farmacología , Hepatitis B/prevención & control , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Reinfección/prevención & control , Simportadores/metabolismo , Curcumina/uso terapéutico , ADN Viral/aislamiento & purificación , Células Hep G2 , Hepatitis B/virología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Reinfección/virología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos
13.
Mol Ther Methods Clin Dev ; 21: 729-740, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-33969146

RESUMEN

With sequencing as a standard frontline protocol to identify emerging viruses such Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), direct utilization of sequence data to program antivirals against the viruses could accelerate drug development to treat their infections. CRISPR-Cas effectors are promising candidates that could be programmed to inactivate viral genetic material based on sequence data, but several challenges such as delivery and design of effective CRISPR RNA (crRNA) need to be addressed to realize practical use. Here, we showed that virus-like particle (VLP) could deliver PspCas13b-crRNA ribonucleoprotein (RNP) in nanomolar range to efficiently suppress dengue virus infection in primary human target cells. Shortening spacer length could significantly enhance RNA-targeting efficiency of PspCas13b in mammalian cells compared to the natural length of 30 nucleotides without compromising multiplex targeting by a crRNA array. Our results demonstrate the potentials of applying PspCas13b RNP to suppress RNA virus infection, with implications in targeting host RNA as well.

14.
Int J Mol Sci ; 11(12): 4905-15, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21614181

RESUMEN

The replacement of disease hepatocytes and the stimulation of endogenous or exogenous regeneration by human mesenchymal stem cells (MSCs) are promising candidates for liver-directed cell therapy. In this study, we isolated MSCs from adult bone marrow by plastic adhesion and induced differentiation with a liver differentiation protocol. Western blot analyses were used to assess the expression of liver-specific markers. Next, MSC-specific proteins were analyzed with two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). To confirm the results from the proteomic study, semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed. We demonstrated that MSCs treated with the liver differentiation protocol expressed significantly more albumin, CK19 and CK20, than did undifferentiated cells. In addition the results of proteomic study demonstrated increases expression of FEM1B, PSMC2 and disulfide-isomerase A3 in MSCs treated with the liver differentiation protocol. These results from proteomic profiling will not only provide insight into the global responses of MSCs to hepatocyte differentiation, but will also lead to in-depth studies on the mechanisms of proteomic changes in MSCs.


Asunto(s)
Diferenciación Celular/fisiología , Hígado/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteoma/biosíntesis , Proteómica , Adulto , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Humanos , Hígado/citología , Masculino , Células Madre Mesenquimatosas/citología
15.
PLoS Negl Trop Dis ; 14(11): e0008835, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33216752

RESUMEN

Suitable cell models are essential to advance our understanding of the pathogenesis of liver diseases and the development of therapeutic strategies. Primary human hepatocytes (PHHs), the most ideal hepatic model, are commercially available, but they are expensive and vary from lot-to-lot which confounds their utility. We have recently developed an immortalized hepatocyte-like cell line (imHC) from human mesenchymal stem cells, and tested it for use as a substitute model for hepatotropic infectious diseases. With a special interest in liver pathogenesis of viral infection, herein we determined the suitability of imHC as a host cell target for dengue virus (DENV) and as a model for anti-viral drug testing. We characterized the kinetics of DENV production, cellular responses to DENV infection (apoptosis, cytokine production and lipid droplet metabolism), and examined anti-viral drug effects in imHC cells with comparisons to the commonly used hepatoma cell lines (HepG2 and Huh-7) and PHHs. Our results showed that imHC cells had higher efficiencies in DENV replication and NS1 secretion as compared to HepG2 and Huh-7 cells. The kinetics of DENV infection in imHC cells showed a slower rate of apoptosis than the hepatoma cell lines and a certain similarity of cytokine profiles to PHHs. In imHC, DENV-induced alterations in levels of lipid droplets and triacylglycerols, a major component of lipid droplets, were more apparent than in hepatoma cell lines, suggesting active lipid metabolism in imHC. Significantly, responses to drugs with DENV inhibitory effects were greater in imHC cells than in HepG2 and Huh-7 cells. In conclusion, our findings suggest superior suitability of imHC as a new hepatocyte model for studying mechanisms underlying viral pathogenesis, liver diseases and drug effects.


Asunto(s)
Virus del Dengue/crecimiento & desarrollo , Dengue/patología , Hepatocitos/patología , Hepatopatías/patología , Hígado/virología , Aedes , Animales , Antivirales/farmacología , Apoptosis/inmunología , Línea Celular Tumoral , Chlorocebus aethiops , Citocinas/metabolismo , Dengue/tratamiento farmacológico , Virus del Dengue/efectos de los fármacos , Células Hep G2 , Hepatocitos/virología , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Hígado/patología , Hepatopatías/tratamiento farmacológico , Hepatopatías/virología , Receptores Virales/metabolismo , Triglicéridos/análisis , Células Vero , Replicación Viral/fisiología
16.
Sci Rep ; 10(1): 19963, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203926

RESUMEN

Since December 2019, the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused severe pneumonia, a disease named COVID-19, that became pandemic and created an acute threat to public health. The effective therapeutics are in urgent need. Here, we developed a high-content screening for the antiviral candidates using fluorescence-based SARS-CoV-2 nucleoprotein detection in Vero E6 cells coupled with plaque reduction assay. Among 122 Thai natural products, we found that Boesenbergia rotunda extract and its phytochemical compound, panduratin A, exhibited the potent anti-SARS-CoV-2 activity. Treatment with B. rotunda extract and panduratin A after viral infection drastically suppressed SARS-CoV-2 infectivity in Vero E6 cells with IC50 of 3.62 µg/mL (CC50 = 28.06 µg/mL) and 0.81 µΜ (CC50 = 14.71 µM), respectively. Also, the treatment of panduratin A at the pre-entry phase inhibited SARS-CoV-2 infection with IC50 of 5.30 µM (CC50 = 43.47 µM). Our study demonstrated, for the first time, that panduratin A exerts the inhibitory effect against SARS-CoV-2 infection at both pre-entry and post-infection phases. Apart from Vero E6 cells, treatment with this compound was able to suppress viral infectivity in human airway epithelial cells. This result confirmed the potential of panduratin A as the anti-SARS-CoV-2 agent in the major target cells in human. Since B. rotunda is a culinary herb generally grown in China and Southeast Asia, its extract and the purified panduratin A may serve as the promising candidates for therapeutic purposes with economic advantage during COVID-19 situation.


Asunto(s)
Antivirales/farmacología , Chalconas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Chlorocebus aethiops , Humanos , Plantas Medicinales/química , SARS-CoV-2/fisiología , Células Vero , Replicación Viral , Zingiberaceae/química
17.
Viruses ; 11(10)2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623162

RESUMEN

More than 350 million people worldwide have been persistently infected with the hepatitis B virus (HBV). Chronic HBV infection could advance toward liver cirrhosis and hepatocellular carcinoma. The intervention with prophylactic vaccine and conventional treatment could suppress HBV, but could not completely eradicate it. The major obstacle for investigating curative antiviral drugs are the incompetence of hepatocyte models that should have closely imitated natural human infection. Here, we demonstrated that an immortalized hepatocyte-like cell line (imHC) could accommodate for over 30 days the entire life cycle of HBV prepared from either established cultured cells or clinically-derived fresh isolates. Normally, imHCs had intact interferon signaling with anti-viral action. Infected imHCs responded to treatments with direct-acting antiviral drugs (DAAs) and interferons (IFNs) by diminishing HBV DNA, the covalently closed circular DNA (cccDNA) surface antigen of HBV (HBsAg, aka the Australia antigen) and the hepatitis B viral protein (HBeAg). Notably, we could observe and quantify HBV spreading from infected cells to naïve cells using an imHC co-culture model. In summary, this study constructed a convenient HBV culture model that allows the screening for novel anti-HBV agents with versatile targets, either HBV entry, replication or cccDNA formation. Combinations of agents aiming at different targets should achieve a complete HBV eradication.


Asunto(s)
Línea Celular Transformada/virología , ADN Circular , Virus de la Hepatitis B/fisiología , Hepatocitos/virología , Replicación Viral , ADN Viral/genética , Hepatitis B/virología , Antígenos de Superficie de la Hepatitis B/análisis , Antígenos e de la Hepatitis B/análisis , Virus de la Hepatitis B/genética , Humanos , Estadios del Ciclo de Vida
18.
PLoS One ; 14(8): e0220825, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31381603

RESUMEN

Human mesenchymal stem cells (hMSCs) have the potential to differentiate into hepatocyte-like cells, indicating that these cells may be the new target cell of interest to produce biopharmaceuticals. Our group recently established a hMSC-derived immortalized hepatocyte-like cell line (imHC) that demonstrates several liver-specific phenotypes. However, the ability of imHC to produce coagulation factors has not been characterized. Here, we examined the potential for imHC as a source of coagulation protein production by investigating the ability of imHC to produce human factor VII (FVII) using a lentiviral transduction system. Our results showed that imHC secreted a low amount of FVII (~22 ng/mL) into culture supernatant. Moreover, FVII from the transduced imHC (0.11 ± 0.005 IU/mL) demonstrated a similar coagulant activity compared with FVII from transduced HEK293T cells (0.12 ± 0.004 IU/mL) as determined by chromogenic assay. We demonstrate for the first time, to the best of our knowledge, that imHC produced FVII, albeit at a low level, indicating the unique characteristic of hepatocytes. Our study suggests the possibility of using imHC for the production of coagulation proteins.


Asunto(s)
Factor VII/genética , Técnicas de Transferencia de Gen , Hepatocitos/metabolismo , Lentivirus/genética , Línea Celular , Factor VII/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción Genética
19.
Curr Protoc Stem Cell Biol ; 42: 4A.13.1-4A.13.34, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28806853

RESUMEN

This unit describes protocols to develop hepatocyte-like cells (HLCs) starting from mesenchymal stem cells (MSCs) as a natural host for hepatitis C virus (HCV). These include the preparation of MSCs from bone marrow, the reprogramming of MSCs into induced pluripotent stem cells (iPSCs), and the differentiation of iPSCs into HLCs. This unit also incorporates the characterization of the resulting cells at each stage. Another section entails the preparations of HCV. The sources of HCV are either the clinically isolated HCV (HCVser) and the conventional JFH-1 genotype. The last section is the infection protocol coupled with the measurement of viral titer. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Hepacivirus/crecimiento & desarrollo , Hepatocitos/virología , Células Madre Pluripotentes Inducidas/virología , Células Madre Mesenquimatosas/virología , Cultivo de Virus/métodos , Hepacivirus/aislamiento & purificación , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología
20.
Stem Cells Transl Med ; 6(4): 1059-1069, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28213976

RESUMEN

The therapeutic use of patient-specific induced pluripotent stem cells (iPSCs) is emerging as a potential treatment of ß-thalassemia. Ideally, patient-specific iPSCs would be genetically corrected by various approaches to treat ß-thalassemia including lentiviral gene transfer, lentivirus-delivered shRNA, and gene editing. These corrected iPSCs would be subsequently differentiated into hematopoietic stem cells and transplanted back into the same patient. In this article, we present a proof of principle study for disease modeling and screening using iPSCs to test the potential use of the modified U7 small nuclear (sn) RNA to correct a splice defect in IVS2-654 ß-thalassemia. In this case, the aberration results from a mutation in the human ß-globin intron 2 causing an aberrant splicing of ß-globin pre-mRNA and preventing synthesis of functional ß-globin protein. The iPSCs (derived from mesenchymal stromal cells from a patient with IVS2-654 ß-thalassemia/hemoglobin (Hb) E) were transduced with a lentivirus carrying a modified U7 snRNA targeting an IVS2-654 ß-globin pre-mRNA in order to restore the correct splicing. Erythroblasts differentiated from the transduced iPSCs expressed high level of correctly spliced ß-globin mRNA suggesting that the modified U7 snRNA was expressed and mediated splicing correction of IVS2-654 ß-globin pre-mRNA in these cells. Moreover, a less active apoptosis cascade process was observed in the corrected cells at transcription level. This study demonstrated the potential use of a genetically modified U7 snRNA with patient-specific iPSCs for the partial restoration of the aberrant splicing process of ß-thalassemia. Stem Cells Translational Medicine 2017;6:1059-1069.


Asunto(s)
Células Eritroides/citología , Células Eritroides/metabolismo , Expresión Génica/genética , Células Madre Pluripotentes Inducidas/citología , ARN Nuclear Pequeño/genética , Globinas beta/genética , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Empalme del ARN/genética , Empalme del ARN/fisiología , Transcriptoma/genética , Talasemia beta/genética , Talasemia beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA