Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446893

RESUMEN

The current study focused on the fabrication of a well-designed, biocompatible, physically stable, non-irritating and highly porous gelatin scaffold loaded with controlled-release triamcinolone acetonide (TA) and econazole nitrate (EN) co-loaded into mesoporous silica nanoparticles (EN-TA-loaded MSNs) to provide a better long-lasting antifungal therapeutic effect with minimal unfavorable effects. Optimization of the MSNs-loaded scaffold was performed using central composite rotatable design (CCRD), where the effect of gelatin concentration (X1), plasticizer (X2) and freezing time (X3) on the entrapment of EN (Y1) and TA (Y2) and on the release of EN (Y3) and TA (Y4) from the scaffold were studied. The significant compatibility of all formulation ingredients with both drugs was established from XRD, DSC and FT-IR spectra analyses while SEM and zeta studies represented a very precise unvarying distribution of the loaded MSNs in the porous structure of the scaffold. The stability of the optimized scaffold was confirmed from zeta potential analysis (-16.20 mV), and it exhibited higher entrapment efficiency (94%) and the slower (34%) release of both drugs. During in vitro and in vivo antifungal studies against Candida albicans, the MSNs-loaded scaffold was comparatively superior in the eradication of fungal infections as a greater zone of inhibition was observed for the optimized scaffold (16.91 mm) as compared to the pure drugs suspension (14.10 mm). Similarly, the MSNs-loaded scaffold showed a decreased cytotoxicity because the cell survival rate in the scaffold presence was 89% while the cell survival rate was 85% in the case of the pure drugs, and the MSNs-loaded scaffold did not indicate any grade of erythema on the skin in comparison to the pure medicinal agents. Conclusively, the scaffold-loaded nanoparticles containing the combined therapy appear to possess a strong prospective for enhancing patients' adherence and therapy tolerance by yielding improved synergistic antifungal efficacy at a low dose with abridged toxicity and augmented wound-healing impact.


Asunto(s)
Antifúngicos , Nanopartículas , Humanos , Antifúngicos/farmacología , Gelatina , Preparaciones de Acción Retardada/farmacología , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Estudios Prospectivos , Nanopartículas/química , Portadores de Fármacos/química
2.
Molecules ; 28(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049881

RESUMEN

Development in the fields of natural-product-derived and synthetic small molecules is in stark contrast to the ongoing demand for novel antimicrobials to treat life-threatening infections caused by extended-spectrum ß-lactamase producing Escherichia coli (ESBL E. coli). Therefore, there is an interest in the antibacterial activities of synthesized N-(4-methylpyridin-2-yl) thiophene-2-carboxamides (4a-h) against ESBL-producing E. coli ST131 strains. A blood sample was obtained from a suspected septicemia patient and processed in the Bactec Alert system. The isolate's identification and antibacterial profile were determined using the VITEK 2® compact system. Multi-locus sequence typing of E. coli was conducted by identifying housekeeping genes, while ESBL phenotype detection was performed according to CLSI guidelines. Additionally, PCR was carried out to detect the blaCTX-M gene molecularly. Moreover, molecular docking studies of synthesized compounds (4a-h) demonstrated the binding pocket residues involved in the active site of the ß-lactamase receptor of E. coli. The result confirmed the detection of E. coli ST131 from septicemia patients. The isolates were identified as ESBL producers carrying the blaCTX-M gene, which provided resistance against cephalosporins and beta-lactam inhibitors but sensitivity to carbapenems. Among the compounds tested, 4a and 4c exhibited high activity and demonstrated the best fit and interactions with the binding pocket of the ß-lactamase enzyme. Interestingly, the maximum of the docking confirmations binds at a similar pocket region, further strengthening the importance of binding residues. Hence, the in vitro and molecular docking studies reflect the promising antibacterial effects of 4a and 4c compounds.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Tipificación de Secuencias Multilocus , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Pruebas de Sensibilidad Microbiana
3.
Molecules ; 27(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35458792

RESUMEN

Breynia distachia is a plant of genus Breynia belonging to family Phyllanthaceae. This study was conducted to isolate and examine the anti-inflammatory attributes of the roots of Breynia distachia. Methanol extract from roots were prepared by simple maceration. For phytochemical studies, isolation, purification, structure elucidation, metal analysis, total phenolic content, and solubility test were done by chromatographic and spectroscopic techniques. Anti-inflammatory activity was evaluated by cotton pallet edema model and carrageenan paw edema model, and antioxidant potential was evaluated by DPPH, FRAP, and ABTS antioxidants assays. Metal analysis of BD.Me revealed the presence of Na > Mg > K > Mn > Fe = Zn in respective order. Four phytochemicals such as gallic acid, quercetin, sinapic acid, and p-coumaric acid are found in Breynia distachia. Quercetin is present in relatively larger quantity, and shows antioxidant activity by reducing the ferric iron to ferrous iron. Novel distachionate shows high antioxidant activity in ABTS assay by reducing reactive oxygen species. Quantitative or qualitative analysis performed by HPLC indicates the ascending peaks or presence of secondary products (metabolites) respectively. Histopathology analysis of liver, spleen, heart, and kidney was done, revealing mild inflammations in spleen and liver, and no cytotoxicity in heart and kidney. Oral administration of BD.Me and ditachionate significantly inhibits the carrageenan and cotton pellet-induced paw edema in 1st and 2nd h with (ns = p > 0.05) than control. After 3rd, 4th, 5th, and 6th h, BD.Me and ditachionate showed inhibition of paw edema in a highly significant (*** = p < 0.001) manner as compared to control. In cotton-pellet edema model, distachionate shows a %inhibition of 57.3% at a dose level of 5 mg/kg. Docking values obtained from distachionate-COX-2 complex suggest a potent inhibitor evaluated for this protein. The distachionate shows effective anti-inflammatory activity. Methanol extracts of roots showed significant lipoxygenase inhibitory activity by IC50 values of 155.7 ± 0.55 and 132.9 ± 0.33 µg/mL. Data from various in vitro and in vivo models suggest that novel distachionate isolated from Breynia distachia shows strong antioxidant and anti-inflammatory activities; it should be further studied for the exploration of its medicinal potential.


Asunto(s)
Antioxidantes , Malpighiales , Animales , Antiinflamatorios/química , Antioxidantes/química , Carragenina/efectos adversos , Ciclooxigenasa 2 , Citocinas , Edema/inducido químicamente , Edema/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Hierro/efectos adversos , Hígado , Metanol/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Quercetina/uso terapéutico , Ratas
4.
Molecules ; 27(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080247

RESUMEN

Combretaceae, an immense family involving species (500) or genera (20), originates in tropical and subtropical regions. This family has evinced medicinal values such as anti-leishmanial, cytotoxic, antibacterial, antidiabetic, antiprotozoal, and antifungal properties. Conocarpus lancifolius (C. lancifolius) methanol extract (CLM) was prepared, then compound isolation performed by open column chromatography, and compound structure was determined by spectroscopic techniques (13C NMR, IR spectroscopy, 1H-NMR, mass spectrometry UV-visible, and 2D correlation techniques). Molecular docking studies of ligand were performed on transcriptional regulators 4EY7 and 2GV9 to observe possible interactions. Phytochemical screening revealed the presence of secondary metabolites including steroids, cardiac glycosides, saponins, anthraquinones, and flavonoids. The isolated compound was distinguished as lancifolamide (LFD). It showed cytotoxic activity against human breast cancer, murine lymphocytic leukemia, and normal cells, human embryonic kidney cells, and rat glioma cells with IC50 values of 0.72 µg/mL, 2.01 µg/mL, 1.55 µg/mL, and 2.40 µg/mL, respectively. Although no cytotoxic activity was noticed against human colon cancer and human lung cancer, LFD showed 24.04% inhibition against BChE and 60.30% inhibition against AChE and is therefore beneficial for Alzheimer's disease (AD). AChE and LFD interact mechanistically in a way that is optimum for neurodegenerative disorders, according to molecular docking studies. Methanol and dichloromethane extract of C. lancifolius and LFD shows antibacterial and antifungal activity against antibiotic resistance Bacillus subtilis, Streptococcus mutans, Brevibacillus laterosporus, Salmonella Typhi, Candida albicans, and Cryptococcus neoformans, respectively. LFD shows antiviral activity against HSV-1 with 26% inhibition IP. The outcomes of this study support the use of LFD for cognitive disorders and highlight its underlying mechanism, targeting AChE, DNA-POL, NF-KB, and TNF-α, etc., for the first time.


Asunto(s)
Inhibidores de la Colinesterasa , Combretaceae , Herpes Simple , Herpesvirus Humano 1 , Acetilcolinesterasa/metabolismo , Animales , Inhibidores de la Colinesterasa/química , Combretaceae/química , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Metanol , Ratones , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Ratas
5.
Molecules ; 27(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35566287

RESUMEN

The occurrence of fungal infections has increased over the past two decades. It is observed that superficial fungal infections are treated by conventional dosage forms, which are incapable of treating deep infections due to the barrier activity possessed by the stratum corneum of the skin. This is why the need for a topical preparation with advanced penetration techniques has arisen. This research aimed to encapsulate fluconazole (FLZ) in a novasome in order to improve the topical delivery. The novasomes were prepared using the ethanol injection technique and characterized for percent entrapment efficiency (EE), particle size (PS), zeta potential (ZP), drug release, Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and antifungal activity. The FN7 formulation with 94.45% EE, 110 nm PS and -24 ZP proved to be the best formulation. The FN7 formulation showed a 96% release of FLZ in 8 h. FTIR showed the compatibility of FLZ with excipients and DSC studies confirmed the thermal stability of FLZ in the developed formulation. The FN7 formulation showed superior inhibition of the growth of Candida albicans compared to the FLZ suspension using a resazurin reduction assay, suggesting high efficacy in inhibiting fungal growth.


Asunto(s)
Fluconazol , Micosis , Antifúngicos/uso terapéutico , Candida albicans , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Fluconazol/química , Fluconazol/farmacología , Micosis/tratamiento farmacológico , Tamaño de la Partícula
6.
Molecules ; 26(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923335

RESUMEN

Wound-healing is complicated process that is affected by many factors, especially bacterial infiltration at the site and not only the need for the regeneration of damaged tissues but also the requirement for antibacterial, anti-inflammatory, and analgesic activity at the injured site. The objective of the present study was to develop and evaluate the natural essential oil-containing nanofiber (NF) mat with enhanced antibacterial activity, regenerative, non-cytotoxic, and wound-healing potential. Clove essential oil (CEO) encapsulated in chitosan and poly-ethylene oxide (PEO) polymers to form NFs and their morphology was analyzed using scanning electron microscopy (SEM) that confirmed the finest NFs prepared with a diameter of 154 ± 35 nm. The successful incorporation of CEO was characterized by Fourier transform infra-red spectroscopy (FTIR) and X-ray diffractometry (XRD). The 87.6 ± 13.1% encapsulation efficiency and 8.9 ± 0.98% loading of CEO was observed. A total of 79% release of CEO was observed in acidic pH 5.5 with 117% high degree of swelling. The prepared NF mat showed good antibacterial activity against Staphylococcus aureus and Escherichia coli and non-cytotoxic behavior against human fibroblast cell lines and showed good wound-healing potential.


Asunto(s)
Quitosano/farmacología , Aceite de Clavo/farmacología , Syzygium/química , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Línea Celular , Quitosano/química , Aceite de Clavo/química , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Fibroblastos/efectos de los fármacos , Humanos , Nanofibras/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
7.
Molecules ; 27(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35011482

RESUMEN

Plumeria rubra (L.) is a traditional folkloric medicinal herb used to treat cardiovascular disorders. The present investigation was methodically planned to investigate the pharmacological foundations for the therapeutic effectiveness of P. rubra in cardiovascular illnesses and its underlying mechanisms. Ex vivo vaso-relaxant effects of crude leaf extract of P. rubra were observed in rabbit aorta ring preparations. Hypotensive effects were measured using pressure and force transducers connected to the Power Lab data acquisition system. Furthermore, P. rubra displayed cardioprotective properties in rabbits when they were exposed to adrenaline-induced myocardial infarction. In comparison to the intoxicated group, the myocardial infarction model showed decreased troponin levels, CK-MB, LDH, ALT, ALP, AST, and CRP, as well as necrosis, apoptosis, oedema, and inflammatory cell enrollment. P. rubra has revealed good antioxidant properties and prolonged the noradrenaline intoxicated platelet adhesion. Its anticoagulant, vasorelaxant, and cardioprotective effects in both in vivo and ex vivo investigations are enabled by blocking L-type calcium channels, lowering adrenaline, induced oxidative stress, and tissue tear, justifying its therapeutic utility in cardiovascular disorders.


Asunto(s)
Apocynaceae/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Animales , Antioxidantes/química , Antioxidantes/farmacología , Aorta/efectos de los fármacos , Aorta/metabolismo , Cardiotónicos/química , Cardiotónicos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Corazón/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Conejos , Vasodilatadores/química , Vasodilatadores/farmacología
8.
Inflammopharmacology ; 29(1): 281-293, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32297069

RESUMEN

Inflammation and angiogenesis are two major contributors to tumourigenesis. Melilotus indicus is traditionally used as an anti-inflammatory agent. The current study was designed to investigate the anti-inflammatory and anti-angiogenic properties of ethanolic extract of M. indicus (Miet) whole plant and its marker compound (coumarin) using a series of in vivo methods. Extraction by maceration was adopted to prepare ethanolic extract. Phytochemical compounds present in Miet were investigated using both qualitative and quantitative methods. In vivo safety profile of Miet was investigated in behavioural studies. Four acute oedema models such as carrageenan, serotonin, histamine-induced paw oedema and xylene-induced ear oedema, and chronic formaldehyde-induced paw oedema model were employed to explore the anti-inflammatory potential of Miet. Chorioallantoic chick membrane assay (CAM) was performed to explore anti-angiogenic potential of Miet. Histopathological evaluations were conducted to access improvement in skin texture of paws. TNF-α ELISA kit was used to study effects of treatment on serum levels of TNF-α. Extraction by maceration resulted in formation of greenish coloured semisolid extract with a high coumarin content. In vivo toxicological studies revealed LD50 of Miet was greater than 8000 mg/kg. Data of acute inflammatory models depicted significant (p < 0.05) inhibition of oedema in Miet, coumarin and standard (piroxicam/indomethacin) treated groups. 750 mg/kg of Miet induced comparable (p > 0.05) anti-inflammatory effects to that of standard-treated groups. Coumarin showed better anti-inflammatory effects in carrageenan-induced paw oedema model as compared with histamine- and serotonin-induced oedema models. Data of chronic inflammatory models also depicted dose-dependent anti-inflammatory attributes of Miet which were comparable with standard treated groups. Significant (p > 0.05) downregulation of TNF-α in serum samples of animals treated with Miet and piroxicam was observed as compared with control group. Furthermore, Miet significantly halted blood vessels formation in CAM assay. Overall, data of the current study highlight that M. indicus has anti-inflammatory and anti-angiogenic potentials, and, thus, can potentially be used as an adjuvant therapy in solid tumours management.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antiinflamatorios/farmacología , Cumarinas/farmacología , Melilotus/química , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/aislamiento & purificación , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/aislamiento & purificación , Cumarinas/aislamiento & purificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Edema/tratamiento farmacológico , Etanol/química , Femenino , Indometacina/farmacología , Inflamación/tratamiento farmacológico , Dosificación Letal Mediana , Piroxicam/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Ratas
9.
Pak J Pharm Sci ; 34(2(Supplementary)): 693-698, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34275804

RESUMEN

The study was carried out to evaluate the hepatoprotective potential of aqueous methanolic extract of Heliotropium strigosum (HSME) against paracetamol induced hepatotoxicity in Swiss albino mice. The plant powder (1.5Kg) was macerated in aqueous methanol (30:70) for 7 days. The extract was evaluated for the presence of different phytochemicals and High-performance liquid chromatography (HPLC) analysis. HSME was orally administered to mice at 125, 250 and 500mg/kg for 8 days followed by paracetamol intoxication (500mg/kg orally) on the 8th day using silymarin as standard control. All the therapy was administered by oral gavage. The liver biochemical parameters and histopathological evaluation were carried out to assess changes in liver function and histology. HPLC analysis confirmed the presence of quercetin, kaempferol, and other phenolic compounds. Treatment with the extract resulted in notable (p<0.05) reduction in liver parameters in dose dependent manner. The action of HSME 500mg/kg dose was comparable to silymarin. The effect of HSME against paracetamol induced hepatotoxicity was demonstrated by protective changes in the liver histopathological which proved the traditional uses of the plant.


Asunto(s)
Acetaminofén/antagonistas & inhibidores , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Heliotropium/química , Extractos Vegetales/farmacología , Acetaminofén/toxicidad , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Cromatografía Líquida de Alta Presión , Femenino , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Metanol , Ratones , Extractos Vegetales/uso terapéutico , Silimarina/farmacología , Silimarina/uso terapéutico
10.
Postgrad Med J ; 96(1135): 277-285, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31685679

RESUMEN

BACKGROUND: Pneumonia-associated septic shock (PASS) in patients with cancer inflicts healthcare burden attributed to high morbidity and mortality. Current study was aimed to evaluate the clinical outcomes, microbiological characteristics, risk factors and impact of life-support interventions on 28-day mortality among cancer patients with PASS. METHODS: A prospective observational study was conducted among cancer patients with PASS admitted to intensive care unit (ICU) of 'Shaukat Khanum Memorial Cancer Hospital'. Data were analysed using appropriate statistical methods. RESULTS: Out of 100 patients who sought medical care during the study period, 59 (59%) were male and majority had solid tumour than haematological malignancies (68% vs 32%). Nosocomial pneumonia was most frequent (90%) followed by healthcare-associated pneumonia (HCAP) (9%) and community-acquired pneumonia (CAP) (1%). The most common causative pathogen was Pseudomonas aeruginosa, 21 (32%). Overall mortality rate was 76% including 15% hospital and 61% ICU mortality. Sequential Organ Failure Assessment (SOFA) score at first day (HR 3.8; 95% CI 1.7 to 8.9; p=0.002), SOFA score at seventh day (HR 8.9; 95% CI 3.6 to 22.7; p=<0.001), invasive mechanical ventilation (HR 8.0; 95% CI 3.2 to 20; p<0.001) and performance status (HR 5.4; 95% CI 2.5 to 11.3; p<0.001) were found to be independently associated with 28-day mortality. Receiver operating characteristic curve analysis accentuates the excellent predictive accuracy of Cox regression model for mortality indicated by area under the curve of 0.892 (95% CI 0.801 to 0.983, p<0.001). CONCLUSION: Our analysis demonstrates substantial mortality associated with PASS among patients with cancer. Timely recognition of patients with high predilection of increased mortality could be of value in improving the disease burden.


Asunto(s)
Neoplasias/mortalidad , Neumonía/mortalidad , Choque Séptico/mortalidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Unidades de Cuidados Intensivos , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Neumonía/microbiología , Estudios Prospectivos , Factores de Riesgo , Choque Séptico/microbiología
11.
Inflammopharmacology ; 28(5): 1153-1161, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32803479

RESUMEN

Coronavirus disease of 2019 (COVID-19) has emerged as a global health threat. Unfortunately, there are very limited approved drugs available with established efficacy against the SARs-CoV-2 virus and its inflammatory complications. Vaccine development is actively being researched, but it may take over a year to become available to general public. Certain medications, for example, dexamethasone, antimalarials (chloroquine/hydroxychloroquine), antiviral (remdesivir), and IL-6 receptor blocking monoclonal antibodies (tocilizumab), are used in various combinations as off-label medications to treat COVID-19. Essential oils (EOs) have long been known to have anti-inflammatory, immunomodulatory, bronchodilatory, and antiviral properties and are being proposed to have activity against SARC-CoV-2 virus. Owing to their lipophilic nature, EOs are advocated to penetrate viral membranes easily leading to membrane disruption. Moreover, EOs contain multiple active phytochemicals that can act synergistically on multiple stages of viral replication and also induce positive effects on host respiratory system including bronchodilation and mucus lysis. At present, only computer-aided docking and few in vitro studies are available which show anti-SARC-CoV-2 activities of EOs. In this review, role of EOs in the prevention and treatment of COVID-19 is discussed. A discussion on possible side effects associated with EOs as well as anti-corona virus claims made by EOs manufacturers are also highlighted. Based on the current knowledge a chemo-herbal (EOs) combination of the drugs could be a more feasible and effective approach to combat this viral pandemic.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antivirales/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Factores Inmunológicos/uso terapéutico , Aceites Volátiles/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Antiinflamatorios no Esteroideos/efectos adversos , Antivirales/efectos adversos , COVID-19 , Humanos , Factores Inmunológicos/efectos adversos , Aceites Volátiles/efectos adversos , Pandemias , Plantas Medicinales/química
12.
Inflammopharmacology ; 28(4): 993-1008, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32172496

RESUMEN

Launaea spinosa is used as an anti-inflammatory agent traditionally. This study was conducted to evaluate anti-inflammatory and anti-angiogenic activities of methanol extract of Launaea spinosa. Extraction was performed by maceration and the resultant green coloured extract was labelled as Ls.Me. Solubility analysis showed that Ls.Me was miscible with distilled water, normal saline, ethanol and methanol. Metal analysis following acid digestion method exhibited the presence of copper, magnesium, manganese, iron, zinc and calcium. Phytochemical analysis confirmed the presence of different classes of secondary metabolites in Ls.Me. HPLC analysis showed the presence of quercetin, gallic acid, caffeic acid, benzoic acid and sinapic acid in Ls.Me. Data of in vitro antioxidant assays showed moderate antioxidant potential of Ls.Me which was also confirmed by data of in vivo enzymes (SOD, CAT, and TSP) assays. Antimicrobial assays data showed that Ls.Me was active against S.aureus and S.epidermidis (bacterial) as well as C.albicans and A.niger (fungal) strains. Data of acute physio-pathological studies showed no abnormalities in Albino rats up to the dose of 2000 mg/kg of Ls.Me. Acute and chronic inflammatory models were used to evaluate anti-inflammatory effects of Ls.Me. Data of acute studies showed that Ls.Me has the potential to arrest inflammation produced by different mediators in a dose-dependent manner. 200 mg/kg of Ls.Me was found to produce significantly (p < 0.05) better anti-inflammatory effects than 100 mg/kg of Ls.Me. Ls.Me also significantly (p < 0.05) inhibited ear edema induced by xylene. Ls.Me showed profound anti-inflammatory responses in paw edema induced by formalin and also inhibited granuloma development in cotton pellet-induced granuloma model. Histopathological and biochemical investigations showed marked reduction in the number of inflammatory cells. TNF-α and IL-6 ELSIA kits were used to study effects of Ls.Me treatment on serum levels of TNF-α and IL-6. Data obtained showed significant (p < 0.05) reduction in TNF-α and IL-6 levels in serum of animals treated with Ls.Me. Data of in vivo angiogenesis assay showed that 200 µg/ml of Ls.Me significantly halted vasculature development indicating its potent anti-angiogenic potential. On the basis of findings of the current study, it is concluded that multiple phytochemicals present in Ls.Me act synergistically to produce anti-inflammatory and anti-angiogenic effects. Further studies are required to standardize the plant extract and explore its safety profile.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antiinflamatorios/farmacología , Asteraceae/química , Extractos Vegetales/farmacología , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/aislamiento & purificación , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Embrión de Pollo , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Edema/tratamiento farmacológico , Femenino , Masculino , Metanol/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Ratas
13.
Inflammopharmacology ; 28(6): 1751, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32748117

RESUMEN

Unfortunately, a section under the heading "Materials and Method" has been published with errors.

14.
Inflammopharmacology ; 28(6): 1691-1704, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32385747

RESUMEN

Chronic wounds may lead to the development of various pathological conditions such as diabetic foot ulcers and pressure sores. The current study evaluated wound healing and anti-inflammatory potentials of methanolic extract of Ephedra ciliata using series of in vivo models. Methanolic extract of Ephedra ciliata was prepared by maceration (Ec.Me). Qualitative and quantitative (HPLC) phytochemical and metal analyses were conducted to explore the chemical and metal profiles of Ec.Me. Safety profile (behavioural) and, antimicrobial, antioxidant, wound healing, anti-inflammatory and anti-angiogenic potentials of Ec.Me were evaluated using well-established in vitro and in vivo models. ELISA assay was performed to estimate the effects of Ec.Me treatment on serum levels of TNF-α. HPLC analysis identified quercetin as one of the major compounds in Ec.Me. Safety study data showed that Ec.Me was safe up to the dose of 2000 mg/kg. Antimicrobial assay data showed that Ec.Me was active against bacterial (Staphylococcus aureus) as well as fungal (Candida albicans and Aspergillus niger) strains. Ec.Me showed modertate antioxidant potential in in vitro and in vivo models. Data of excision and burn wound healing models showed that Ec.Me, promoted wound closure in a dose and time-dependent manner. Treatment with 20% Ec.Me cream and heparin showed almost the same effects with no statistical differences (p > 0.05). Ec.Me also showed time-dependent anti-inflammatory activities in both acute and chronic models. In carrageenan model, treatment with 200 mg/kg of Ec.Me showed comparable anti-inflammatory effects (p > 0.05) with quercetin and indomethacin throughout the study. In cotton pellet granuloma model treatment with 200 mg/kg of Ec.Me and indomethacin inhibited granuloma formation significantly better (p < 0.05) as compared with the rest of the treatment groups. Histopathological examination of skin samples showed marked improvement in architecture with minimal infiltration of inflammatory cells. Data of in vivo angiogenesis assay showed marked improvement in vessels length, density, branching points, total segments and total nets after treatment with Ec.Me, indicating no toxic effects towards vasculature development. Significant (p < 0.05) downregulation of TNF-α was observed in serum samples of animals treated with Ec.Me. Based on data of the current study, it is concluded that quercetin-rich extract of Ephedra ciliata has wound healing and anti-inflammatory potentials via downregulation of TNF-α. Moreover, it is suggested that the antimicrobial activity of Ec.Me prevented microbial invasion, thus promoted natural wound healing mechanisms as well.


Asunto(s)
Antiinflamatorios/farmacología , Regulación hacia Abajo/efectos de los fármacos , Ephedra/química , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Animales , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Aspergillus niger/efectos de los fármacos , Candida albicans/efectos de los fármacos , Femenino , Indometacina/farmacología , Inflamación/metabolismo , Masculino , Metanol/química , Pruebas de Sensibilidad Microbiana/métodos , Hojas de la Planta/química , Quercetina/farmacología , Ratas , Piel/efectos de los fármacos , Piel/metabolismo , Staphylococcus aureus/efectos de los fármacos
16.
Acta Pol Pharm ; 72(5): 821-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26665388

RESUMEN

Ruellia is a genus of flowering plants commonly known as Ruellias or Wild Petunias which belongs to the family Acanthaceae. It contains about 250 genera and 2500 species. Most of these are shrubs, or twining vines; some are epiphytes. Only a few species are distributed in temperate regions. They are distributed in Indonesia and Malaysia, Africa, Brazil, Central America and Pakistan. Some of these are used as medicinal plants. Many species of the genus has antinociceptive, antioxidant, analgesic, antispasmolytic, antiulcer, antidiabetic and anti-inflammatory properties. The phytochemicals constituents: glycosides, alkaloids, flavonoids and triterpenoids are present. The genus has been traditionally claimed to be used for the treatment of flu, asthma, fever, bronchitis, high blood pressure, eczema, and diabetes. The objective of this review article is to summarize all the pharmacological and phytochemical evaluations or investigations to find area of gap and endorse this genus a step towards commercial drug. Hence, further work required is to isolate and characterize the active compounds responsible for these activities in this plant and bring this genus plants to commercial health market to serve community with their potential benefits.


Asunto(s)
Acanthaceae/química , Etnofarmacología , Extractos Vegetales/farmacología , Animales , Humanos , Fitoquímicos/análisis , Fitoterapia
17.
PLoS One ; 19(3): e0298986, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38551975

RESUMEN

Syzygium heyneanum is a valuable source of flavonoids and phenols, known for their antioxidant and neuroprotective properties. This research aimed to explore the potential of Syzygium heyneanum ethanol extract (SHE) in countering Parkinson's disease. The presence of phenols and flavonoids results in SHE displaying an IC50 value of 42.13 when assessed in the DPPH scavenging assay. Rats' vital organs (lungs, heart, spleen, liver, and kidney) histopathology reveals little or almost no harmful effect. The study hypothesized that SHE possesses antioxidants that could mitigate Parkinson's symptoms by influencing α-synuclein, acetylcholinesterase (AChE), TNF-α, and IL-1ß. Both in silico and in vivo investigations were conducted. The Parkinson's rat model was established using paraquat (1 mg/kg, i.p.), with rats divided into control, disease control, standard, and SHE-treated groups (150, 300, and 600 mg/kg) for 21 days. According to the ELISA statistics, the SHE treated group had lowers levels of IL-6 and TNF-α than the disease control group, which is a sign of neuroprotection. Behavioral and biochemical assessments were performed, alongside mRNA expression analyses using RT-PCR to assess SHE's impact on α-synuclein, AChE, TNF-α, and interleukins in brain homogenates. Behavioral observations demonstrated dose-dependent improvements in rats treated with SHE (600 > 300 > 150 mg/kg). Antioxidant enzyme levels (catalase, superoxide dismutase, glutathione) were significantly restored, particularly at a high dose, with notable reduction in malondialdehyde. The high dose of SHE notably lowered acetylcholinesterase levels. qRT-PCR results indicated reduced mRNA expression of IL-1ß, α-synuclein, TNF-α, and AChE in SHE-treated groups compared to disease controls, suggesting neuroprotection. In conclusion, this study highlights Syzygium heyneanum potential to alleviate Parkinson's disease symptoms through its antioxidant and modulatory effects on relevant biomarkers.


Asunto(s)
Enfermedad de Parkinson , Syzygium , Humanos , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Paraquat/toxicidad , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Syzygium/química , Acetilcolinesterasa/metabolismo , China , Factor de Necrosis Tumoral alfa/metabolismo , Roedores , Etnicidad , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fenoles/farmacología , Flavonoides/farmacología , ARN Mensajero/metabolismo , Estrés Oxidativo
18.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39065758

RESUMEN

Silver oxide (Ag2O) particles are wonderful candidates due to their unique properties, and their use in a wide range of research, industrial and biomedical applications is rapidly increasing. This makes it fundamental to develop simple, environmentally friendly methods with possible scaling. Herein, sodium borohydride and Datura innoxia leaf extract were applied as chemical and biological stabilizing and reducing agents to develop Ag2O particles. The primary aim was to evaluate the anticancer and antiviral activity of Ag2O particles prepared via two methods. XRD, UV-visible and SEM analyses were used to examine the crystallite structure, optical properties and morphology, respectively. The resulting green-synthesized Ag2O particles exhibited small size, spherically agglomerated shape, and high anticancer and antiviral activities compared to chemically synthesized Ag2O particles. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium-bromide) assay of green-synthesized Ag2O particles showed high anticancer activity against MCF-7 cells with IC50 = 17.908 µg/mL compared to chemically synthesized Ag2O particles with IC50 = 23.856 µg/mL. The antiviral activity of green-synthesized Ag2O particles and chemically synthesized Ag2O particles was also evaluated by a plaque-forming assay, and green-synthesized Ag2O particles showed higher antiviral ability with IC50 = 0.618 µg/mL as compared to chemically synthesized Ag2O particles with IC50 = 6.129 µg/mL. We propose the use of green-synthesized Ag2O particles in cancer treatment and drug delivery.

19.
Heliyon ; 10(16): e36297, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247278

RESUMEN

Continuous use of oral NSAIDs can damage mucosal membrane, which results in decreased bioavailability and non-compliance with the therapy. But the use of sustained release drug delivery systems might offer a solution. Objective was to synthesize mucoadhesive SR microspheres by using different combinations of pectin (PEC) and its thiolated derivative (T-PEC3100) for improved loxoprofen (LS) permeation. Thiolated pectin (T-PEC) was synthesized by the esterification method using thioglycolic acid. Thiolation was confirmed by thiol group quantification and charring point determination. Further characterization was done by Fourier Transform Infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM). Ex-vivo mucoadhesion study was performed to confirm the improved characteristics. Microspheres (MS) were prepared using different ratios of PEC/T-PEC by solvent evaporation method and their particle size and surface morphology were evaluated. Mucus permeation study was carried out using the trans-well plate method. Sustained release behavior of prepared microspheres was investigated through the edema inhibition method in albino rats. T-PEC3100 was considered the optimum formulation for further evaluation and contained maximum thiol group content. FTIR spectra showed a characteristic peak of -SH and charring point was also changed considerably confirming the successful thiolation of PEC. SEM results showed spherical microspheres in the size range of 2-10 µm. Thiol-rich formulation of MS exhibited more than 80 % release after 12 h and maximum absorbable dose (MAD) was calculated as 400 µg % inhibition of edema in MS treated group was slowly attained initially but the reduction in inflammation was detected even after 24 h as compared to control group. Promising results from In-vivo edema inhibition study suggest the possible use of these thiolated MS in formulating sustained release formulation for arthritis.

20.
Front Pharmacol ; 14: 1243742, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239191

RESUMEN

Panicum antidotale has traditionally been used as a poultice to alleviate local inflammation and painful diseases. This study aimed to evaluate the anti-inflammatory, wound-healing, analgesic, and antipyretic potential of its ethanol extract (PAAPEE) in vivo for the first time. In vitro antioxidant assays of Panicum antidotale using a 2,2-diphenyl-1-picrylhydrazyl assay revealed that it showed IC50 of 62.50 ± 6.85 µg/mL in contrast to standard, ascorbic acid, that showed IC50 of 85.51 ± 0.38 µg/mL. Administration of PAAPEE at a dose of 500 mg/kg (PAAPEE-500) displayed 78.44% and 75.13% inhibition of paw edema in carrageenen and histamine-induced edema models. respectively, 6 h post-treatment compared to that of the untreated group. Furthermore, it showed 68.78% inhibition of Freund's complete adjuvant-induced edema 21 days after treatment. It reduced the animal's rectal temperature in the yeast-induced fever model to 99.45 during the fourth h post-treatment. It significantly inhibited abnormal writhing by 44% in the acetic acid-induced pain model. PAE-500 also showed enhancement in wound closure by 72.52% with respect to that of the untreated group on the 10th day post-treatment using the excision healing of wound model. Histopathological examination of skin samples confirmed this improvement, showing enhanced tissue architecture with minimal infiltration of inflammatory cells. High-performance liquid chromatography (HPLC) of PAAPEE revealed the presence of quercetin, gallic, p-coumaric, benzoic, chlorogenic, syringic, ferulic, cinnamic, and sinapic acids. Molecular docking of 5-lipoxygenase and glycogen synthase kinase-3 ß protein indicated their potential interaction within the active sites of both enzymes. Thus, P. antidotale serves as an effective natural wound-healing, anti-inflammatory, analgesic, and antipyretic agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA