Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genet Med ; 22(8): 1296-1302, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32418989

RESUMEN

PURPOSE: Spinal muscular atrophy (SMA) was added to the Recommended Uniform Screening Panel (RUSP) in July 2018, following FDA approval of the first effective SMA treatment, and demonstration of feasibility of high-throughput newborn screening using a primary molecular assay. SMA newborn screening was implemented in New York State (NYS) on 1 October 2018. METHODS: Screening was conducted using DNA extracted from dried blood spots with a multiplex real-time quantitative polymerase chain reaction (qPCR) assay targeting the recurrent SMN1 exon 7 gene deletion. RESULTS: During the first year, 225,093 infants were tested. Eight screened positive, were referred for follow-up, and confirmed to be homozygous for the deletion. Infants with two or three copies of the SMN2 gene, predicting more severe, earlier-onset SMA, were treated with antisense oligonucleotide and/or gene therapy. One infant with ≥4 copies SMN2 also received gene therapy. CONCLUSION: Newborn screening permits presymptomatic SMA diagnosis, when treatment initiation is most beneficial. At 1 in 28,137 (95% confidence interval [CI]: 1 in 14,259 to 55,525), the NYS SMA incidence is 2.6- to 4.7-fold lower than expected. The low SMA incidence is likely attributable to imprecise and biased estimates, coupled with increased awareness, access to and uptake of carrier screening, genetic counseling, cascade testing, prenatal diagnosis, and advanced reproductive technologies.


Asunto(s)
Atrofia Muscular Espinal , Tamizaje Neonatal , Femenino , Homocigoto , Humanos , Incidencia , Lactante , Recién Nacido , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/epidemiología , Atrofia Muscular Espinal/genética , New York , Embarazo , Proteína 1 para la Supervivencia de la Neurona Motora/genética
2.
Hum Mutat ; 37(2): 201-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26538069

RESUMEN

Infants are screened for cystic fibrosis (CF) in New York State (NYS) using an IRT-DNA algorithm. The purpose of this study was to validate and assess clinical validity of the US FDA-cleared Illumina MiSeqDx CF 139-Variant Assay (139-VA) in the diverse NYS CF population. The study included 439 infants with CF identified via newborn screening (NBS) from 2002 to 2012. All had been screened using the Abbott Molecular CF Genotyping Assay or the Hologic InPlex CF Molecular Test. All with CF and zero or one mutation were tested using the 139-VA. DNA extracted from dried blood spots was reliably and accurately genotyped using the 139-VA. Sixty-three additional mutations were identified. Clinical sensitivity of three panels ranged from 76.2% (23 mutations recommended for screening by ACMG/ACOG) to 79.7% (current NYS 39-mutation InPlex panel), up to 86.0% for the 139-VA. For all, sensitivity was highest in Whites and lowest in the Black population. Although the sample size was small, there was a nearly 20% increase in sensitivity for the Black CF population using the 139-VA (68.2%) over the ACMG/ACOG and InPlex panels (both 50.0%). Overall, the 139-VA is more sensitive than other commercially available panels, and could be considered for NBS, clinical, or research laboratories conducting CF screening.


Asunto(s)
Bioensayo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Mutación , Población Negra , Fibrosis Quística/etnología , Fibrosis Quística/patología , Pruebas con Sangre Seca , Femenino , Pruebas Genéticas , Técnicas de Genotipaje , Hispánicos o Latinos , Humanos , Lactante , Recién Nacido , Masculino , Tamizaje Neonatal , Sensibilidad y Especificidad , Población Blanca
3.
J Neurosci Res ; 94(11): 1063-75, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638592

RESUMEN

Live newborn screening for Krabbe's disease (KD) was initiated in New York on August 7, 2006, and started in Missouri in August, 2012. As of August 7, 2015, nearly 2.5 million infants had been screened, and 443 (0.018%) infants had been referred for followup clinical evaluation; only five infants had been determined to have KD. As of August, 2015, the combined incidence of infantile KD in New York and Missouri is ∼1 per 500,000; however, patients who develop later-onset forms of KD may still emerge. This Review provides an overview of the processes used to develop the screening and followup algorithms. It also includes updated results from screening and discussion of observations, lessons learned, and suggested areas for improvement that will reduce referral rates and the number of infants defined as at risk for later-onset forms of KD. Although current treatment options for infants with early-infantile Krabbe's disease are not curative, over time treatment options should improve; in the meantime, it is essential to evaluate the lessons learned and to ensure that screening is completed in the best possible manner until these improvements can be realized. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Leucodistrofia de Células Globoides/diagnóstico , Tamizaje Neonatal , Algoritmos , Animales , Humanos , Recién Nacido
4.
J Neurosci Res ; 94(11): 1076-83, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638593

RESUMEN

Newborn screening (NBS) for Krabbe's disease (KD) has been instituted in several states, and New York State has had the longest experience. After an initial screening of dried blood spots, samples from individuals with galactocerebrosidase (GALC) values below a given cutoff level were subjected to additional testing, including sequencing of the GALC gene. This resulted in the identification of mutations that had previously been found in confirmed KD patients and of variants that had never previously been reported. Some individuals had variants considered to be polymorphisms, alone or on the same allele as another mutation. To help with counseling of families on the risk for a newborn to develop KD, expression studies were conducted with these variants identified by NBS. GALC activity was measured in COS1 cells for 140 constructs and compared with mutations that had previously been seen in confirmed cases of KD. When a polymorphism was present on the same allele as the variant, expressed activity was measured with and without the polymorphism. In some cases the presence of the polymorphism greatly lowered the measured GALC activity, possibly making it disease causing. Although it is not possible to predict conclusively whether a variant is severe and will result in infantile KD if two such variants are present or whether a variant is mild and will result in late-onset disease, some variants clearly are not disease causing. This is the largest expression study of GALC variants/mutations found in NBS and confirmed KD cases. This work will be helpful for counseling families of screen-positive newborns found to have low GALC activity. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Galactosilceramidasa/genética , Leucodistrofia de Células Globoides/genética , Mutación/genética , Animales , Células COS , Cercopithecus , Femenino , Galactosilceramidasa/metabolismo , Pruebas Genéticas , Haplotipos , Humanos , Recién Nacido , Masculino , Mutagénesis Sitio-Dirigida/métodos , New York , Transfección
5.
Genet Med ; 18(3): 239-48, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26795590

RESUMEN

PURPOSE: Krabbe disease (KD) results from galactocerebrosidase (GALC) deficiency. Infantile KD symptoms include irritability, progressive stiffness, developmental delay, and death. The only potential treatment is hematopoietic stem cell transplantation. New York State (NYS) implemented newborn screening for KD in 2006. METHODS: Dried blood spots from newborns were assayed for GALC enzyme activity using mass spectrometry, followed by molecular analysis for those with low activity (≤12% of the daily mean). Infants with low enzyme activity and one or more mutations were referred for follow-up diagnostic testing and neurological examination. RESULTS: Of >1.9 million screened, 620 infants were subjected to molecular analysis and 348 were referred for diagnostic testing. Five had enzyme activities and mutations consistent with infantile KD and manifested clinical/neurodiagnostic abnormalities. Four underwent transplantation, two are surviving with moderate to severe handicaps, and two died from transplant-related complications. The significance of many sequence variants identified is unknown. Forty-six asymptomatic infants were found to be at moderate to high risk for disease. CONCLUSIONS: The positive predictive value of KD screening in NYS is 1.4% (5/346) considering confirmed infantile cases. The incidence of infantile KD in NYS is approximately 1 in 394,000, but it may be higher for later-onset forms.


Asunto(s)
Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Leucodistrofia de Células Globoides/diagnóstico , Tamizaje Neonatal/métodos , Polimorfismo de Nucleótido Simple , Algoritmos , Pruebas con Sangre Seca , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Recién Nacido , Leucodistrofia de Células Globoides/enzimología , Leucodistrofia de Células Globoides/terapia , Espectrometría de Masas , New York , Valor Predictivo de las Pruebas , Resultado del Tratamiento
6.
Eur J Pediatr ; 175(2): 181-93, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26293390

RESUMEN

Newborn screening for cystic fibrosis (CF), a chronic progressive disease affecting mucus viscosity, has been beneficial in both improving life expectancy and the quality of life for individuals with CF. In New York State from 2007 to 2012 screening for CF involved measuring immunoreactive trypsinogen (IRT) levels in dried blood spots from newborns using the IMMUCHEM(™) Blood Spot Trypsin-MW ELISA kit. Any specimen in the top 5% IRT level underwent DNA analysis using the InPlex(®) CF Molecular Test. Of the 1.48 million newborns screened during the 6-year time period, 7631 babies were referred for follow-up. CF was confirmed in 251 cases, and 94 cases were diagnosed with CF transmembrane conductance regulated-related metabolic syndrome or possible CF. Nine reports of false negatives were made to the program. Variation in daily average IRT was observed depending on the season (4-6 ng/ml) and kit lot (<3 ng/ml), supporting the use of a floating cutoff. The screening method had a sensitivity of 96.5%, specificity of 99.6%, positive predictive value of 4.5%, and negative predictive value of 99.5%. CONCLUSION: Considerations for CF screening algorithms should include IRT variations resulting from age at specimen collection, sex, race/ethnicity, season, and manufacturer kit lots. WHAT IS KNOWN: Measuring IRT level in dried blood spots is the first-tier screen for CF. Current algorithms for CF screening lead to substantial false-positive referral rates. WHAT IS NEW: IRT values were affected by age of infant when specimen is collected, race/ethnicity and sex of infant, and changes in seasons and manufacturer kit lots The prevalence of CF in NYS is 1 in 4200 with the highest prevalence in White infants (1 in 2600) and the lowest in Black infants (1 in 15,400).


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/diagnóstico , Tamizaje Neonatal/métodos , Tripsinógeno/sangre , Algoritmos , Fibrosis Quística/epidemiología , Femenino , Pruebas Genéticas/métodos , Humanos , Lactante , Recién Nacido , Masculino , Mutación , New York/epidemiología , Prevalencia , Sensibilidad y Especificidad
7.
Clin Chem ; 59(7): 1045-51, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23509109

RESUMEN

BACKGROUND: Dried blood spot (DBS) samples have been widely used in newborn screening (NBS) for the early identification of disease to facilitate the presymptomatic treatment of congenital diseases in newborns. As molecular genetics knowledge and technology progresses, there is an increased demand on NBS programs for molecular testing and a need to establish reliable, low-cost methods to perform those analyses. Here we report a flexible, cost-efficient, high-throughput DNA extraction method from DBS adaptable to small- and large-scale screening settings. METHODS: Genomic DNA (g.DNA) was extracted from single 3-mm diameter DBS by the sequential use of red cell lysis, detergent-alkaline, and acid-neutralizing buffers routinely used in whole blood and plant tissue DNA extractions. We performed PCR amplification of several genomic regions using standard PCR conditions and detection methods (agarose gel, melting-curve analysis, TaqMan-based assays). Amplicons were confirmed by BigDye® Terminator cycle sequencing and compared with reference sequences. RESULTS: High-quality g.DNA was extracted from hundreds of DBS, as proven by mutation detection of several human genes on multiple platforms. Manual and automated extraction protocols were validated. Quantification of g.DNA by Oligreen® fluorescent nucleic acid stain demonstrated a normal population distribution closely corresponding with white blood cell counts detected in newborn populations. CONCLUSIONS: High-quality, amplifiable g.DNA is extractable from DBSs. Our method is adaptable, reliable, and scalable to low- and high-throughput NBS at low cost ($0.10/sample). This method is routinely used for molecular testing in the New York State NBS program.


Asunto(s)
ADN/aislamiento & purificación , Pruebas con Sangre Seca/métodos , Análisis Costo-Beneficio , ADN/sangre , Pruebas con Sangre Seca/economía , Humanos , Recién Nacido , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Neurology ; 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835557

RESUMEN

BACKGROUND AND OBJECTIVES: Spinal muscular atrophy (SMA) was added to the Recommended Uniform Screening Panel (RUSP) in July 2018, largely on the basis of the availability and efficacy of newly-approved disease modifying therapies. New York State (NYS) started universal newborn screening for SMA in October 2018. The authors report the findings from the first 3 years of screening. METHODS: Statewide neonatal screening was conducted using DNA extracted from dried blood spots using a real-time quantitative polymerase chain reaction (qPCR) assay. Retrospective follow-up data were collected from 9 referral centers across the state on 34 infants. RESULTS: In the first three years since statewide implementation, nearly 650,000 infants have been screened for SMA. 34 babies screened positive and were referred to a neuromuscular specialty care center. The incidence remains lower than previously predicted. The majority (94%), including all infants with 2-3 copies of SMN2, have received treatment. Among treated infants, the overwhelming majority (97%; 29/30) have received gene replacement. All infants in this cohort with 3 copies of SMN2 are clinically asymptomatic post-treatment based on early clinical follow-up data. Infants with 2 copies of SMN2 are more variable in their outcomes. Electrodiagnostic outcomes data from a subgroup of patients (n=11) for whom pre- and post-treatment data demonstrated either improvement or no change in CMAP amplitude at last clinical follow-up compared to pre-treatment baseline. Most infants were treated before 6 weeks of age (median = 34.5 DOL; range 11-180). Delays and barriers to treatment identified by treating clinicians followed two broad themes: medical and non-medical. Medical delays most commonly reported were presence of AAV9 antibodies and elevated troponin I levels. Non-medical barriers included delays in obtaining insurance as well as insurance policies regarding specific treatment modalities. DISCUSSION: The findings from the NYS cohort of newborn screen-identified infants are consistent with other reports of improved outcomes from early diagnosis and treatment. Additional biomarkers of motor neuron health including electromyography can potentially be helpful in detecting pre-clinical decline.

9.
Int J Neonatal Screen ; 7(2)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071213

RESUMEN

Krabbe disease (KD) is a rare inherited neurodegenerative disorder caused by a deficiency in galactocerebrosidase enzyme activity, which can present in early infancy, requiring an urgent referral for hematopoietic stem cell transplantation, or later in life. Newborn screening (NBS) for KD requires identification and risk-stratification of patients based on laboratory values to predict disease onset in early infancy or later in life. The biomarker psychosine plays a key role in NBS algorithms to ascertain probability of early-onset disease. This report describes a patient who was screened positive for KD in New York State, had a likely pathogenic genotype, and showed markedly reduced enzyme activity but surprisingly low psychosine levels. The patient ultimately developed KD in late infancy, an outcome not clearly predicted by existing NBS algorithms. It remains critical that psychosine levels be evaluated alongside genotype, enzyme activity levels, and the patient's evolving clinical presentation, ideally in consultation with experts in KD, in order to guide diagnosis and plans for monitoring.

10.
Int J Neonatal Screen ; 7(4)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34842611

RESUMEN

Newborn screening (NBS) for Cystic Fibrosis (CF) is associated with improved outcomes. All US states screen for CF; however, CF NBS algorithms have high false positive (FP) rates. In New York State (NYS), the positive predictive value of CF NBS improved from 3.7% to 25.2% following the implementation of a three-tier IRT-DNA-SEQ approach using commercially available tests. Here we describe a modification of the NYS CF NBS algorithm via transition to a new custom next-generation sequencing (NGS) platform for more comprehensive cystic fibrosis transmembrane conductance regulator (CFTR) gene analysis. After full gene sequencing, a tiered strategy is used to first analyze only a specific panel of 338 clinically relevant CFTR variants (second-tier), followed by unblinding of all sequence variants and bioinformatic assessment of deletions/duplications in a subset of samples requiring third-tier analysis. We demonstrate the analytical and clinical validity of the assay and the feasibility of use in the NBS setting. The custom assay has streamlined our molecular workflow, increased throughput, and allows for bioinformatic customization of second-tier variant panel content. NBS aims to identify those infants with the highest disease risk. Technological molecular improvements can be applied to NBS algorithms to reduce the burden of FP referrals without loss of sensitivity.

11.
Mol Genet Metab ; 99(3): 263-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20036593

RESUMEN

INTRODUCTION: Medium chain acyl-CoA dehydrogenase (MCAD) deficiency is one of the most common inborn errors of metabolism. Affected patients have impaired ability to break down medium chain fatty acids during fasting, and typically present in the early years of life with hypoketotic hypoglycemia, Reye syndrome-like symptoms, brain damage or death. The development of newborn screening (NBS) for MCAD deficiency has greatly improved outcome, but some patients still appear at risk for severe complications. We reviewed the outcome of patients identified with MCAD deficiency by the New York State NBS process to identify biochemical or genotypic markers which might predict outcome. METHOD: All eight NBS follow-up centers in New York State contributed the cases of MCAD deficiency diagnosed by newborn screen, who received diagnostic and follow-up care in their clinic. Data reviewed included gender, age, birthweight, initial NBS octanoylcarnitine level (C8) and C8/C2 ratio, follow-up C8 and hexanoylglycine, race/ethnicity, and presence of neonatal or later symptoms. RESULTS: We identified 53 cases of MCAD deficiency. More than one quarter of patients had a post-neonatal symptomatic admission (predominantly lethargy associated with an intercurrent illness). No genotype or C8 level was protective for neonatal or later symptoms. There was a relationship between initial C8 level or C8/C2 ratio and occurrence of later symptoms (7.3 micromol/L in the asymptomatic vs. 19.1 micromol/L in the symptomatic, p<0.0002 for C8, and 0.26 vs. 0.6, respectively, for C8/C2 ratio, p<0.012). Four infants had initial C8 level >30 micromol/L; these infants had a high rate of symptomatic or multiple symptomatic episodes or a history of sibling death from "SIDS", and typically had deletion, nonsense or splice sites mutations. Infants having a history of a symptomatic episode were more likely to have higher initial C8 on NBS and a genotype predicted to strongly affect protein function. In our ethnically diverse group of patients, the c.985A>G mutation was rarely found in non-Caucasians. DISCUSSION: No genotype or metabolite profile is protective from symptoms. The strong relationship between initial C8 level and outcome suggests that in at least some cases neonates having high initial C8 levels may be demonstrating an increased susceptibility to catabolic stress, and may merit additional precautions. Our data also suggest that these infants are more likely to carry severe mutations including homozygosity for the common mutation, deletions, nonsense or splice site mutations. The reports of significant lethargy or hypoglycemia during intercurrent illness in over one quarter of cases even when early medical intervention is recommended (and even when initial C8 is not profoundly elevated) underscores the importance of continued vigilance to prevent stressful fasting in this disorder.


Asunto(s)
Acil-CoA Deshidrogenasas/deficiencia , Acil-CoA Deshidrogenasas/genética , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/fisiopatología , Tamizaje Neonatal/métodos , Carnitina/análogos & derivados , Carnitina/sangre , Ácidos Grasos/metabolismo , Femenino , Genotipo , Humanos , Recién Nacido , Masculino , Errores Innatos del Metabolismo/genética , Mutación , New York , Fenotipo , Pronóstico
12.
Orphanet J Rare Dis ; 14(1): 46, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30777126

RESUMEN

BACKGROUND: Krabbe disease is a rare neurological disorder caused by a deficiency in the lysosomal enzyme, ß-galactocerebrosidase, resulting in demyelination of the central and peripheral nervous systems. If left without treatment, Krabbe disease results in progressive neurodegeneration with reduced quality of life and early death. The purpose of this prospective study was to describe the natural progression of early onset Krabbe disease in a large cohort of patients. METHODS: Patients with early onset Krabbe disease were prospectively evaluated between 1999 and 2018. Data sources included diagnostic testing, parent questionnaires, standardized multidisciplinary neurodevelopmental assessments, and neuroradiological and neurophysiological tests. RESULTS: We evaluated 88 children with onset between 0 and 5 months. Median age of symptom onset was 4 months; median time to diagnosis after onset was 3 months. The most common initial symptoms were irritability, feeding difficulties, appendicular spasticity, and developmental delay. Other prevalent symptoms included axial hypotonia, abnormal deep tendon reflexes, constipation, abnormal pupillary response, scoliosis, loss of head control, and dysautonomia. Results of nerve conduction studies showed that 100% of patients developed peripheral neuropathy by 6 months of age. Median galactocerebrosidase enzyme activity was 0.05 nmol/h/mg protein. The median survival was 2 years. CONCLUSIONS: This is the largest prospective natural history study of Krabbe disease. It provides a comprehensive description of the disease during the first 2 years of life. With recent inclusion of state mandated newborn screening programs and promising therapeutic interventions, enhancing our understanding of disease progression in early onset Krabbe disease will be critical for developing treatments, designing clinical trials, and evaluating outcomes.


Asunto(s)
Leucodistrofia de Células Globoides/patología , Tamizaje Neonatal/métodos , Niño , Progresión de la Enfermedad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Estudios Prospectivos
13.
Am J Med Genet A ; 146A(5): 610-9, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18241067

RESUMEN

Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is one of the most common fatty acid oxidation disorders. A subpopulation of children with MCADD present with metabolic crisis induced by fasting or illness, become lethargic, and can experience seizures or coma, culminating in a 20% mortality rate during the first episode. The frequency of these metabolic crises can be reduced with early diagnosis and treatment. The prevalence of MCADD in the United States is estimated to be 1 per 15,000 with p.K304E (c.985A > G) accounting for 90% of mutant alleles. In an 18-month period after initiating screening, the New York State Newborn Screening Mass Spectrometry Laboratory screened 385,893 newborns and referred 511 samples with elevated (>or=0.3 micromol/L) octanoylcarnitine (C8) levels for molecular testing. Of these referrals, six p.K304E homozygotes and 154 heterozygotes were identified. Twenty infants were biochemically confirmed with MCADD, per report from the child's pediatrician and/or treatment center. In these 20 cases, p.K304E accounted for only 47.5% of the mutant alleles. Further testing showed a second variant, p.Y42H, accounted for 7.5% of mutant alleles while the remaining 45% were unknown. Samples from all diagnosed non-p.K304E homozygous infants, and samples with C8 levels >or=1.0 micromol/L were sequenced (n = 16). Six novel and seven previously reported mutations were detected. These results suggest that p.K304E has a far lower representation in New York newborns with MCADD than current literature estimates and its full mutational spectrum is still unknown.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Acil-CoA Deshidrogenasa/genética , Mutación Puntual , Secuencia de Bases , Enfermedades Carenciales/diagnóstico , Enfermedades Carenciales/epidemiología , Pruebas Genéticas , Humanos , Recién Nacido , Datos de Secuencia Molecular , Tamizaje Neonatal , New York/epidemiología , Población , Análisis de Secuencia de ADN , Estados Unidos
14.
PLoS One ; 13(2): e0193438, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29481565

RESUMEN

α-Synuclein aggregation has been linked to Gaucher's disease (GD) and Krabbe's disease (KD), lysosomal conditions affecting glycosphingolipid metabolism. α-Synuclein pathology has been directly attributed to the dysregulation of glycosphingolipids in both conditions, specifically to increased galactosylsphingosine (psychosine) content in the context of KD. Furthermore, the gene (GALC) coding for the psychosine degrading enzyme galactosylceramidase (GALC), has recently been identified as a risk loci for Parkinson's disease. However, it is unknown if changes in psychosine metabolism and GALC activity in the context of the aging human brain correlate with Parkinson's disease. We investigated psychosine accumulation and GALC activity in the aging brain using fresh frozen post-mortem tissue from Parkinson's (PD, n = 10), Alzheimer's (AD, n = 10), and healthy control patients (n = 9), along with tissue from neuropsychiatric patients (schizophrenia, bipolar disorder and depression, n = 15 each). An expanded mutational analysis of PD (n = 20), AD (n = 10), and healthy controls (n = 30) examined if PD was correlated with carriers for severe GALC mutations. Psychosine content within the cerebral cortex of PD patients was elevated above control patients. Within all patients, psychosine displayed a significant (p<0.05) and robust regional distribution in the brain with higher levels in the white matter and substantia nigra. A mutational analysis revealed an increase in the incidence of severe GALC mutations within the PD patient population compared to the cohorts of Alzheimer's patients and healthy controls tested. In addition to α-synuclein pathology identified in the KD brain, control patients identified as GALC mutational carriers or possessing a GALC pathogenic variant had evidence of α-synuclein pathology, indicating a possible correlation between α-synuclein pathology and dysregulation of psychosine metabolism in the adult brain. Carrier status for GALC mutations and prolonged exposure to increased psychosine could contribute to α-synuclein pathology, supporting psychosine metabolism by galactosylceramidase as a risk factor for Parkinson's disease.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Galactosilceramidasa/metabolismo , Enfermedad de Parkinson/metabolismo , Psicosina/genética , Psicosina/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Autopsia , Estudios de Cohortes , Femenino , Humanos , Masculino , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo
16.
Pediatr Pulmonol ; 50(8): 771-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26098992

RESUMEN

Newborn screening for Cystic Fibrosis (CF) began in New York in October, 2002 using immunoreactive trypsinogen (IRT)/DNA methodology. Infants with at least one CFTR mutation or very high IRT and no mutations (VHIRT) are referred for sweat testing. In a preliminary analysis, we noted a very low positive predictive value (PPV) and preponderance of Hispanic infants in the group of infants with CF referred for VHIRT, which led to a decision to revise, but not eliminate, the VHIRT category. Automatic referral for specimens with VHIRT collected on the day of birth was eliminated, and the VHIRT threshold was raised from 0.2% to 0.1%. In this report, we describe outcomes from VHIRT referrals among 2.4 million infants screened between March 2003 and February 2013. Following the algorithm change, referrals decreased by 37.8% overall (annual mean 1,485 vs. 923), and the VHIRT PPV improved (0.6-1.0%). The number of infants diagnosed has remained consistent at 1 in 4,400 births. The proportion of Black/Hispanic/Asian/Other infants with confirmed CF, CFTR-related metabolic syndrome (CRMS), or possible CF/CRMS was 21.3% in infants with 1-2 mutations, but 75.8% in the VHIRT group. In conclusion, although the PPV among VHIRT referrals remains low, had this category never been implemented, 24 infants with confirmed CF, and 9 infants with CRMS or possible CF/CRMS, most of whom were Hispanic, would have been missed over the 10 years. Information from this study may be helpful in assessing the need for the VHIRT category and algorithm changes in other screening programs.


Asunto(s)
Fibrosis Quística/diagnóstico , Tamizaje Neonatal , Derivación y Consulta , Tripsinógeno/sangre , Algoritmos , Biomarcadores/sangre , Fibrosis Quística/sangre , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Lactante , Recién Nacido , Mutación , New York , Valor Predictivo de las Pruebas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA